[1] Antipin, O., Mojaza, M., Sannino, F.:
Conformal extensions of the standard model with Veltman conditions. Phys. Rev. D 89 (8) (2014), 085015 arXiv:1310.0957v3. Published 7 April 2014.
DOI 10.1103/PhysRevD.89.085015
[2] Canarutto, D.:
Possibly degenerate tetrad gravity and Maxwell-Dirac fields. J. Math. Phys. 39 (9) (1998), 4814–4823.
DOI 10.1063/1.532541 |
MR 1643353
[4] Canarutto, D.:
Minimal geometric data’ approach to Dirac algebra, spinor groups and field theories. Int. J. Geom. Methods Mod. Phys. 4 (6) (2007), 1005–1040, arXiv:math-ph/0703003.
DOI 10.1142/S0219887807002417 |
MR 2352863
[5] Canarutto, D.:
Fermi transport of spinors and free QED states in curved spacetime. Int. J. Geom. Methods Mod. Phys. 6 (5) (2009), 805–824, arXiv:0812.0651v1 [math-ph].
DOI 10.1142/S0219887809003801 |
MR 2555478
[6] Canarutto, D.:
Tetrad gravity, electroweak geometry and conformal symmetry. Int. J. Geom. Methods Mod. Phys. 8 (4) (2011), 797–819, arXiv:1009.2255v1 [math-ph].
DOI 10.1142/S0219887811005403 |
MR 2817601
[11] Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion. C. R. Acad. Sci. Paris 174 (1922), 593–595.
[12] Cartan, É.:
Sur les variétés á connexion affine et la théorie de la relativité généralisée, Part I. rt I, Ann. Sci. École Norm. Sup. 40 (1923), 325–412, and ibid. 41 (1924), 1–25; Part II: ibid. 42 (1925), 17–88.
DOI 10.24033/asens.751 |
MR 1509255
[13] Corianò, C., Rose, L. Delle, Quintavalle, A., Serino, M.:
Dilaton interactions and the anomalous breaking of scale invariance of the standard model. J. High Energy Phys. 77 (2013), 42 pages.
MR 3083333
[14] Faddeev, L.D.: An alternative interpretation of the Weinberg-Salam model. Progress in High Energy Physics and Nuclear Safety (Begun, V., Jenkovszky, L., Polański, A., eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 2009, arXiv:hep-th/0811.3311v2.
[15] Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M.:
A geometric definition of Lie derivative for spinor fields. Proceedings of the conference “Differential Geometry and Applications”, Masaryk University, Brno, 1996, pp. 549–557.
MR 1406374
[16] Ferraris, M., Kijowski, J.:
Unified Geometric Theory of Electromagnetic and Gravitational Interactions. Gen. Relativity Gravitation 14 (1) (1982), 37–47.
DOI 10.1007/BF00756195 |
MR 0650163
[18] Frölicher, A., Nijenhuis, A.:
Theory of vector valued differential forms, I. Indag. Math. 18 (1956).
MR 0082554
[20] Hawking, S.W., Ellis, G.F.R.:
The large scale structure of space-time. Cambridge Univ. Press, Cambridge, 1973.
MR 0424186
[21] Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.:
Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance. Phys. Rep 258 (1995), 1–171.
DOI 10.1016/0370-1573(94)00111-F |
MR 1340371
[22] Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.:
General relativity with spin and torsion: Foundations and prospects. 48 (3) (1976), 393–416.
MR 0439001
[24] Hehl, W.:
Spin and torsion in General Relativity: II. Geometry and field equations. Gen. Relativity Gravitation 5 (1974).
DOI 10.1007/BF02451393 |
MR 0416462
[25] Helfer, A.D.:
Spinor Lie derivatives and Fermion stress-energies. Proc. R. Soc. A (to appear); arXiv:1602.00632 [hep-th].
MR 3471678
[29] Janyška, J., Modugno, M.:
Hermitian vector fields and special phase functions. Int. J. Geom. Methods Mod. Phys. 3 (4) (2006), 1–36, arXiv:math-ph/0507070v1.
DOI 10.1142/S0219887806001351 |
MR 2237902
[31] Kijowski, J.:
A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity. Gen. Relativity Gravitation 29 (1997), 307–343.
DOI 10.1023/A:1010268818255 |
MR 1439857
[33] Landau, L., Lifchitz, E.:
Théorie du champ. Mir, Moscou, 1968.
MR 0218091
[34] Lavelle, M., McMullan, D.:
Observables and Gauge Fixing in Spontaneously Broken Gauge Theories. Phys. Lett. B 347 (1995), 89–94, arXiv:9412145v1.
DOI 10.1016/0370-2693(95)00046-N
[35] Leão, R.F., Rodrigues, Jr., W.A., Wainer, S.A.:
Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach. Adv. Appl. Clifford Algebras (2015), arXiv:1411.7845 [math-ph].
MR 3619360
[36] Mangiarotti, L., Modugno, M.:
Fibered spaces, jet spaces and connections for field theory. Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna, 1983, pp. 135–165.
MR 0760841
[37] Michor, P.W.: Frölicher-Nijenhuis bracket. Encyclopaedia of Mathematics (Hazewinkel, M., ed.), Springer, 2001.
[38] Modugno, M., Saller, D., Tolksdorf, J.:
Classification of infinitesimal symmetries in covariant classical mechanics. J. Math. Phys. 47 (2006), 062903.
DOI 10.1063/1.2199068 |
MR 2239972
[39] Novello, M., Bittencourt, E.:
What is the origin of the mass of the Higgs boson?. Phys. Rev. D (2012), 063510, arXiv:1209.4871v1.
DOI 10.1103/PhysRevD.86.063510
[40] Ohanian, H.C.:
Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breakin. Gen. Relativity Gravitation 48 (3) (2016), arXiv:1502.00020 [gr-qc].
DOI 10.1007/s10714-016-2023-8 |
MR 3456955
[42] Penrose, R., Rindler, W.:
Spinors and space-time. I: Two-spinor calculus and relativistic fields. Cambridge University Press, Cambridge, 1984.
MR 0908073
[43] Penrose, R., Rindler, W.:
Spinors and space-time. II: Spinor and twistor methods in space-time geometry. Cambridge University Press, Cambridge, 1988.
MR 0990891
[44] Pervushinand, V.N., Arbuzov, A.B., Barbashov, B.M., Nazmitdinov, R.G., Borowiec, A., Pichugin, K.N., Zakharov, A.F.:
Conformal and affine Hamiltonian dynamics of general relativity. Gen. Relativity Gravitation 44 (11) (2012), 2745–2783.
DOI 10.1007/s10714-012-1423-7 |
MR 2989574
[47] Ryskin, M.G., Shuvaev, A.G.:
Higgs boson as a dilaton. Phys. Atomic Nuclei 73 (2010), 965–970, arXiv:0909.3374v1.
DOI 10.1134/S1063778810060104
[50] Trautman, A.:
Einstein-Cartan theory. Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G.L., Tsou, S.T., eds.), vol. 2, Elsevier, Oxford, 2006, pp. 189–195.
MR 2238867
[51] Vitolo, R.:
Quantum structures in Galilei general relativity. Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257.
MR 1718181
[53] Yano, : Lie Derivatives and its Applications. North-Holland, Amsterdam, 1955.