Previous |  Up |  Next

Article

Keywords:
Riccati equation; oscillation; non oscillation; prepared (preferred) solution; Liouville’s formula
Summary:
The Riccati equation method is used for study the oscillatory and non oscillatory behavior of solutions of systems of two first order linear two by two dimensional matrix differential equations. An integral and an interval oscillatory criteria are obtained. Two non oscillatory criteria are obtained as well. On an example, one of the obtained oscillatory criteria is compared with some well known results.
References:
[1] Butler, G.J., Erbe, L.H., Mingarelli, A.B.: Riccati techniques and variational principles in oscillation theory for linear systems. Trans. Amer. Math. Soc. 303 (1) (1987), 263–282. DOI 10.1090/S0002-9947-1987-0896022-5 | MR 0896022
[2] Byers, R., Harris, B.J., Kwong, M.K.: Weighted means and oscillation conditions for second order matrix differential equations. J. Differential Equations 61 (1986), 164–177. DOI 10.1016/0022-0396(86)90117-8 | MR 0823400
[3] Erbe, L.H., Kong, Q., Ruan, Sh.: Kamenev type theorems for second order matrix differential systems. Proc. Amer. Math. Soc. 117 (4) (1993), 957–962. MR 1154244
[4] Grigorian, G.A.: On two comparison tests for second-order linear ordinary differential equations. Differ. Uravn. 47 (2011), 1225–1240, translation in Differential Equations 47 (2011), no. 9 1237–1252. DOI 10.1134/S0012266111090023 | MR 2918496
[5] Grigorian, G.A.: Two comparison criteria for scalar Riccati equations with applications. Russian Math. (Iz. VUZ) 56 (11) (2012), 17–30. DOI 10.3103/S1066369X12110023 | MR 3137099
[6] Grigorian, G.A.: Global solvability of scalar Riccati equations. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (2015), 35–48. MR 3374339
[7] Grigorian, G.A.: On the stability of systems of two first-order linear ordinary differential equations. Differ. Uravn. 51 (3) (2015), 283–292. DOI 10.1134/S0012266115030015 | MR 3373201
[8] Grigorian, G.A.: On one oscillatory criterion for the second order linear ordinary differential equations. Opuscula Math. 36 (5) (2016), 589–601, http://dx.doi.org/10.7494/OpMath.2016.36.5.589 DOI 10.7494/OpMath.2016.36.5.589 | MR 3520801
[9] Hartman, P.: Ordinary differential equations. Classics Appl. Math., SIAM 38 (2002). MR 1929104 | Zbl 1009.34001
[10] Li, L., Meng, F., Zhung, Z.: Oscillation results related to integral averaging technique for linear hamiltonian system. Dynam. Systems Appl. 18 (2009), 725–736. MR 2562259
[11] Meng, F., Mingarelli, A.B.: Oscillation of linear hamiltonian systems. Proc. Amer. Math. Soc. 131 (3) (2002), 897–904. DOI 10.1090/S0002-9939-02-06614-5 | MR 1937428
[12] Mingarelli, A.B.: On a conjecture for oscillation of second order ordinary differential systems. Proc. Amer. Math. Soc. 82 (4), 593–598. MR 0614884
[13] Wang, Q.: Oscillation criteria for second order matrix differential systems. Arch. Math. (Basel) 76 (2001), 385–390. DOI 10.1007/PL00000448 | MR 1824258
[14] Zhung, Z., Zhu, S.: Hartman type oscillation criteria for linear matrix hamiltonian systems. Dynam. Systems Appl. 17 (2008), 85–96. MR 2433892
Partner of
EuDML logo