[1] Butler, G.J., Erbe, L.H., Mingarelli, A.B.:
Riccati techniques and variational principles in oscillation theory for linear systems. Trans. Amer. Math. Soc. 303 (1) (1987), 263–282.
DOI 10.1090/S0002-9947-1987-0896022-5 |
MR 0896022
[2] Byers, R., Harris, B.J., Kwong, M.K.:
Weighted means and oscillation conditions for second order matrix differential equations. J. Differential Equations 61 (1986), 164–177.
DOI 10.1016/0022-0396(86)90117-8 |
MR 0823400
[3] Erbe, L.H., Kong, Q., Ruan, Sh.:
Kamenev type theorems for second order matrix differential systems. Proc. Amer. Math. Soc. 117 (4) (1993), 957–962.
MR 1154244
[4] Grigorian, G.A.:
On two comparison tests for second-order linear ordinary differential equations. Differ. Uravn. 47 (2011), 1225–1240, translation in Differential Equations 47 (2011), no. 9 1237–1252.
DOI 10.1134/S0012266111090023 |
MR 2918496
[6] Grigorian, G.A.:
Global solvability of scalar Riccati equations. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (2015), 35–48.
MR 3374339
[10] Li, L., Meng, F., Zhung, Z.:
Oscillation results related to integral averaging technique for linear hamiltonian system. Dynam. Systems Appl. 18 (2009), 725–736.
MR 2562259
[12] Mingarelli, A.B.:
On a conjecture for oscillation of second order ordinary differential systems. Proc. Amer. Math. Soc. 82 (4), 593–598.
MR 0614884
[14] Zhung, Z., Zhu, S.:
Hartman type oscillation criteria for linear matrix hamiltonian systems. Dynam. Systems Appl. 17 (2008), 85–96.
MR 2433892