[2] Blanchini, F.:
The gain scheduling and the robust state feedback stabilization problems. IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070.
DOI 10.1109/9.887627 |
MR 1798443
[3] Dayawansa, W., Martin, C.:
A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44 (1999), 4, 751-760.
DOI 10.1109/9.754812 |
MR 1684429
[7] Johansson, M., Rantzer, A.:
Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43 (1998), 4, 555-559.
DOI 10.1109/9.664157 |
MR 1617547
[9] Lin, M., Sun, Z.:
Approximating the spectral abscissa for switched linear systems via coordinate transformations. J. Systems Science Complexity 29 (2016), 2, 350-366.
DOI 10.1007/s11424-015-4175-0 |
MR 3479753
[10] Molchanov, A., Pyatnitskiy, Y.:
Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989), 1, 59-64.
DOI 10.1016/0167-6911(89)90021-2 |
MR 1006848
[11] Morse, A.:
Supervisory control of families of linear set-point controllers {Part I.} {Exact} matching. IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431.
DOI 10.1109/9.539424 |
MR 1413375
[12] Narendra, K., Balakrishnan, J.:
A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471.
DOI 10.1109/9.362846 |
MR 1337573
[15] Protasov, V., Jungers, R.:
Analysing the stability of linear systems via exponential Chebyshev polynomials. IEEE Trans. Automat. Control 61 (2016), 3, 795-798.
DOI 10.1016/j.laa.2007.12.027 |
MR 3474181
[18] Sun, Z.: Matrix measure approach for stability of switched linear systems. In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007.
[19] Shorten, R., Narendra, K.:
On common quadratic Lapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans. Automat. Control 48 (2003), 4, 618-621.
DOI 10.1109/tac.2003.809795 |
MR 1968044
[21] Xiong, J., Sun, Z.:
Approximation of extreme measure for switched linear systems. In: 9th IEEE International Conference on Control and Automation, Santiago 2011.
DOI 10.1109/icca.2011.6138012