Previous |  Up |  Next

Article

Keywords:
switched linear systems; matrix set measure; spectral abscissa; coordinate transformations
Summary:
In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu_1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.
References:
[1] Barabanov, N.: Ways to compute the Lyapunov index for differential nesting. Automat. Remote Control 50 (1989), 4, 475-479. DOI 10.1109/tac.1969.1099279 | MR 0998835
[2] Blanchini, F.: The gain scheduling and the robust state feedback stabilization problems. IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070. DOI 10.1109/9.887627 | MR 1798443
[3] Dayawansa, W., Martin, C.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44 (1999), 4, 751-760. DOI 10.1109/9.754812 | MR 1684429
[4] Chitour, Y., Mason, P., Sigalotti, M.: On the marginal instability of linear switched systems. Systems Control Lett. 61 (2012), 747-757. DOI 10.1016/j.sysconle.2012.04.005 | MR 2929512
[5] Gurvits, L.: Stability of discrete linear inclusions. Linear Algebra Appl. 231 (1995), 47-85. DOI 10.1016/0024-3795(95)90006-3 | MR 1361100
[6] Johansson, M.: Piecewise Linear Control Systems. Springer, New York 2003. DOI 10.1007/3-540-36801-9 | MR 1946385
[7] Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43 (1998), 4, 555-559. DOI 10.1109/9.664157 | MR 1617547
[8] Liberzon, D., Hespanha, J., Morse, A.: Stability of switched systems: A Lie-algebraic condition. Systems Control Lett. 37 (1999), 117-122. DOI 10.1016/s0167-6911(99)00012-2 | MR 1751257
[9] Lin, M., Sun, Z.: Approximating the spectral abscissa for switched linear systems via coordinate transformations. J. Systems Science Complexity 29 (2016), 2, 350-366. DOI 10.1007/s11424-015-4175-0 | MR 3479753
[10] Molchanov, A., Pyatnitskiy, Y.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989), 1, 59-64. DOI 10.1016/0167-6911(89)90021-2 | MR 1006848
[11] Morse, A.: Supervisory control of families of linear set-point controllers {Part I.} {Exact} matching. IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431. DOI 10.1109/9.539424 | MR 1413375
[12] Narendra, K., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471. DOI 10.1109/9.362846 | MR 1337573
[13] Nedic, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. J. Optim. Theory Appl. 1 (2009), 205-228. DOI 10.1007/s10957-009-9522-7 | MR 2520367
[14] Parrilo, P., Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428 (2008), 10, 2385-2402. DOI 10.1016/j.laa.2007.12.027 | MR 2408034
[15] Protasov, V., Jungers, R.: Analysing the stability of linear systems via exponential Chebyshev polynomials. IEEE Trans. Automat. Control 61 (2016), 3, 795-798. DOI 10.1016/j.laa.2007.12.027 | MR 3474181
[16] Shih, M., Wu, J., Pang, C.: Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl. 252 (1997), 61-70. DOI 10.1016/0024-3795(95)00592-7 | MR 1428628
[17] Sun, Z.: A note on marginal stability of switched systems. IEEE Trans. Automat. Control 53 (2008), 2, 625-631. DOI 10.1109/tac.2008.917644 | MR 2394405
[18] Sun, Z.: Matrix measure approach for stability of switched linear systems. In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007.
[19] Shorten, R., Narendra, K.: On common quadratic Lapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans. Automat. Control 48 (2003), 4, 618-621. DOI 10.1109/tac.2003.809795 | MR 1968044
[20] Sun, Z., Ge, S.: Stability Theory of Switched Dynamical Systems. Springer-Verlag, London 2011. DOI 10.1007/978-0-85729-256-8 | MR 3221851
[21] Xiong, J., Sun, Z.: Approximation of extreme measure for switched linear systems. In: 9th IEEE International Conference on Control and Automation, Santiago 2011. DOI 10.1109/icca.2011.6138012
Partner of
EuDML logo