[1] Alsmadi, O.M.K., Abo-Hammour, Z.S.:
A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms. Computational Intelligence and Neuroscience 2015 (2015), 1-9.
DOI 10.1155/2015/615079
[4] Baur, U., Beattie, C., Benner, P., Gugercin, S.:
Interpolatory projection methods for parameterized model reduction. SIAM J. Scientific Computing 33 (2011), 2489-2518.
DOI 10.1137/090776925 |
MR 2861634
[6] Beghi, A., Lepschy, A., Viaro, U.:
A property of the Routh table and its use. IEEE Trans. Automat. Control 39 (1994), 2494-2496.
DOI 10.1109/9.362839 |
MR 1337580
[7] Benner, P., Grundel, S., Hornung, N.:
Parametric model order reduction with a small $H_2$-error using radial basis functions. Adv. Comput. Math. 41 (2015), 5, 1231-1253.
DOI 10.1007/s10444-015-9410-7 |
MR 3428565
[11] Desai, S. R., Prasad, R.:
A new approach to order reduction using stability equation and big bang big crunch optimization. Systems Science Control Engineering: An Open Access J. 1 (2013), 20-27.
DOI 10.1080/21642583.2013.804463
[12] Desai, S. R., Prasad, R.: Generating lower order systems using modified truncation and PSO. Int. J. Computer Appl. 12 (2013), 17-21.
[13] Dorato, P., Lepschy, A., Viaro, U.:
Some comments on steady-state and asymptotic responses. IEEE Trans. Education 37 (1994), 264-268.
DOI 10.1109/13.312135
[14] Ferrante, A., Krajewski, W., Lepschy, A., Viaro, U.:
Convergent algorithm for $L_2$ model reduction. Automatica 35 (1999), 75-79.
DOI 10.1016/s0005-1098(98)00142-3
[15] Fortuna, L., Nunnari, G., Gallo, A.:
Model Order Reduction Techniques with Applications in Electrical Engineering. Springer-Verlag, London 1992.
DOI 10.1007/978-1-4471-3198-4
[18] Glover, K.:
All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds. Int. J. Control 39 (1984), 1115-1193.
DOI 10.1080/00207178408933239 |
MR 0748558
[19] Gu, G.:
All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds in discrete time. Int. J. Control 78 (2005), 408-423.
DOI 10.1080/00207170500110988 |
MR 2147650
[21] Gugercin, S., Antoulas, A., Beattie, C.: A rational Krylov iteration for optimal $H_2$ model reduction. Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 1665-1667.
[22] Gugercin, S., Antoulas, A., Beattie, C.:
$H_2$ model reduction for large-scale linear dynamical systems. SIAM J. Matrix Analysis Appl. 30 (2008), 609-638.
DOI 10.1137/060666123 |
MR 2421462
[23] Gugercin, S., Polyuga, R. V., Beattie, C., Schaft, A. van der:
Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48 (2012), 1963-1974.
DOI 10.1016/j.automatica.2012.05.052 |
MR 2956873
[24] Huang, X. X., Yan, W. Y., Teo, K. L.:
$H_2$ near-optimal model reduction. IEEE Trans. Automat. Control 46 (2001), 1279-1284.
DOI 10.1109/9.940934 |
MR 1847334
[25] Hutton, M. F., Friedland, B.:
Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Automat. Control 20 (1975), 329-337.
DOI 10.1109/tac.1975.1100953 |
MR 0439332
[27] King, A. M., Desai, U. B., Skelton, R. E.:
A generalized approach to q-Markov covariance equivalent realizations for discrete systems. Automatica 24 (1988), 507-515.
DOI 10.1016/0005-1098(88)90095-7 |
MR 0956572
[28] Krajewski, W., Lepschy, A., Viaro, U.:
Compact form of the optimality conditions for multivariable $L_2$ model reduction. Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CL (1991/92) (1992), 119-128.
MR 1261290
[30] Krajewski, W., Lepschy, A., Viaro, U.:
Remarks on algorithms for $L_2$ model reduction. Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CLII (1993/1994) (1994), 99-106.
MR 1353809
[31] Krajewski, W., Lepschy, A., Viaro, U.:
Reduction of linear continuous-time multivariable systems by matching first- and second-order information. IEEE Trans. Automat. Control 39 (1994), 2126-2129.
DOI 10.1109/9.328814 |
MR 1295743
[32] Krajewski, W., Lepschy, A., Viaro, U.:
Model reduction by matching Markov parameters, time moments, and impulse-response energies. IEEE Trans. Automat. Contr. 40, 949-953.
DOI 10.1109/9.384238 |
MR 1328099
[33] Krajewski, W., Lepschy, A., Redivo-Zaglia, M., Viaro, U.:
A program for solving the L2 reduced-order problem with fixed denominator degree. Numerical Algorithms 9 (1995), 355-377.
DOI 10.1007/bf02141596 |
MR 1339727
[35] Krajewski, W., Viaro, U.:
Iterative-interpolation algorithms for $L_2$ model reduction. Control and Cybernetics 38 (2009), 543-554.
MR 2591289
[36] Krishnamurthy, V., Seshadri, V.:
Model reduction using the Routh stability criterion. IEEE Trans. Automat. Contr. 23 (1978), 729-731.
DOI 10.1109/tac.1978.1101805
[38] Lepschy, A., Mian, G. A., Viaro, U.:
Splitting of some $s$-domain stability test algorithms. Int. J. Control 50 (1989), 2237-2247.
DOI 10.1080/00207178908953495
[40] Meier, L., Luenberger, D. G.:
Approximation of linear constant systems. IEEE Trans. Automat. Contr. 12 (1967), 585-588.
DOI 10.1109/tac.1967.1098680
[42] Mittal, S. K., Chandra, D., Dwivedi, B.:
A computer-aided approach for Routh-Padé approximation of SISO systems based on multi-objective optimization. Int. J. Eng. Technol. 2 (2010), 204-210.
MR 2579902
[43] Moore, B. C.:
Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26 (1981), 17-32.
DOI 10.1109/tac.1981.1102568 |
MR 0609248
[45] Mullis, C. T., Roberts, R. A.:
The use of second-order data in the approximation of discrete-time linear systems. IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 226-238.
DOI 10.1109/tassp.1976.1162795 |
MR 0497017
[47] Panda, S., Tomar, S. K., Prasad, R., Ardil, C.:
Reduction of linear time-invariant systems using Routh-approximation and PSO. Int. J. Electrical Computer Electronics and Communication Eng. 3 (2009), 20-27.
MR 2482061
[51] Ramawat, K., Kumar, A.:
Improved Padé-pole clustering approach using genetic algorithm for model order reduction. Int. J. Computer Appl. 114 (2015), 24-285.
DOI 10.5120/19943-1737
[52] Rana, J. S., Prasad, R., Singh, R.: Order reduction using modified pole clustering and factor division method. Int. J. Innovative Tech. Exploring Eng. 3 (2014), 134-136.
[53] Ryaben'kii, V. S., Tsynkov, S. V.: A Theoretical Introduction to Numerical Analysis. Chapman and Hall/CRC (Taylor and Francis Group), Boca Raton 2006.
[54] Rydel, M., Stanisławski, W.:
Selection of fitness functions for evolutionary algorithms and their influence on the properties of a reduced mathematical MIMO model. In: Proc. IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje 2015.
DOI 10.1109/mmar.2015.7283941
[55] Saini, D. K., Prasad, R.: Order reduction of linear interval systems using genetic algorithm. Int. J. Eng. Technol. 2 (2010), 316-319.
[58] Soh, C. B.:
Generalization of the Hermite-Biehler theorem and applications. IEEE Trans. Automat. Control 35 (1990), 222-225.
DOI 10.1109/9.45186 |
MR 1038425
[59] Soloklo, H. N., Farsangi, M. M.: Order reduction by minimizing integral square error and $H_{\infty}$ norm of error. J. Adv. Computer Res. 5 (2014), 29-42.
[60] Sreeram, V., Agathoklis, P.:
Model reduction of linear discrete systems via weighted impulse response Gramians. Int. J. Control 53 (1991), 129-144.
DOI 10.1080/00207179108953613 |
MR 1085103
[61] Tanguy, N., Iassamen, N., Telescu, M., Cloastre, P.:
Parameter optimization of orthonormal basis functions for efficient rational approximations. Appl. Math. Modelling 39 (2015), 4963-4970.
DOI 10.1016/j.apm.2015.04.017 |
MR 3354880
[64] Viaro, U.: Stability tests revisited. In: A Tribute to Antonio Lepschy (G. Picci and M. E. Valcher, eds.), Edizioni Libreria Progetto, Padova 2007, pp. 189-199.
[65] Vishwakarma, C.B., Prasad, R.: Order reduction using the advantages of differentiation method and factor division algorithm. Indian J. Engineering & Materials Sciences 15 (2008), 447-451.
[66] Xu, Y., Zeng, T.:
Optimal $H_2$ model reduction for large scale MIMO systems via tangential interpolation. Int. J. Numerical Analysis and Modeling 8 (2011), 174-188.
MR 2740486
[67] Wang, Y., Bernstein, D. S., Watson, L. T.:
Probability-one homotopy algorithms for solving the coupled Lyapunov equations arising in reduced-order $H _2/H_{\infty}$ modeling, estimation, and control. Appl. Math Comput. 123 (2001), 155-185.
DOI 10.1016/s0096-3003(00)00059-x |
MR 1847909
[68] Yan, W. Y., Lam, J.:
An approximate approach to $H^2$ optimal model reduction. IEEE Trans. Automat. Control 44 (1999), 1341-1358.
DOI 10.1109/9.774107 |
MR 1697424
[69] Zeng, C., Chen, Y. Q.:
Global Padé approximations of the generalized Mittag-Leffler function and its inverse. Fractional Calculus and Applied Analysis (arXiv:1310.5592) 18 (2015), 1-15.
DOI 10.1515/fca-2015-0086 |
MR 3433025
[70] Zeng, T., Lu, C.:
Two-sided Grassmann manifold algorithm for optimal $H_2$ model reduction. Int. J. Numerical Methods Engrg. 104 (2015), 10, 928-943.
DOI 10.1515/fca-2015-0086 |
MR 3416241
[71] Ziegler, J. G., Nichols, N. B.:
Optimum settings for automatic controllers. Trans. ASME 64 (1942), 759-765.
DOI 10.1109/tit.1972.1054906
[72] Žigić, D., Watson, L. T., Collins, E. G., Jr., Bernstein, D. S.:
Homotopy methods for solving the optimal projection equations for the $H_2$ reduced order model problem. Int. J. Control 56 (1992), 173-191.
DOI 10.1080/00207179208934308 |
MR 1170891