Previous |  Up |  Next

Article

Keywords:
model reduction; $L_2$ norm; Routh approximation; steady–state response
Summary:
A computationally simple method for generating reduced-order models that minimise the $L_2$ norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the $L_2$-optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques.
References:
[1] Alsmadi, O.M.K., Abo-Hammour, Z.S.: A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms. Computational Intelligence and Neuroscience 2015 (2015), 1-9. DOI 10.1155/2015/615079
[2] Astolfi, A.: Model reduction by moment matching for linear and nonlinear systems. IEEE Trans. Automat. Contr. 55 (2010), 2321-2336. DOI 10.1109/tac.2010.2046044 | MR 2742223
[3] Barnett, S., Šiljac, D. D.: Routh's algorithm: a centennial survey. SIAM Review 19 (1977), 472-489. DOI 10.1137/1019070 | MR 0446660
[4] Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Scientific Computing 33 (2011), 2489-2518. DOI 10.1137/090776925 | MR 2861634
[5] Bistritz, Y.: Optimal fraction-free Routh tests for complex and real integer polynomials. IEEE Trans. Circuits Syst. I 60 (2013), 2453-2464. DOI 10.1109/tcsi.2013.2246232 | MR 3105256
[6] Beghi, A., Lepschy, A., Viaro, U.: A property of the Routh table and its use. IEEE Trans. Automat. Control 39 (1994), 2494-2496. DOI 10.1109/9.362839 | MR 1337580
[7] Benner, P., Grundel, S., Hornung, N.: Parametric model order reduction with a small $H_2$-error using radial basis functions. Adv. Comput. Math. 41 (2015), 5, 1231-1253. DOI 10.1007/s10444-015-9410-7 | MR 3428565
[8] Bultheel, A., Moor, B. De: Rational approximation in linear systems and control. J. Comput. Appl. Math. 121 (2000), 355-378. DOI 10.1016/s0377-0427(00)00339-3 | MR 1780055
[9] Bultheel, A., Barel, M. Van: Padé techniques for model reduction in linear system theory: a survey. J. Comput. Appl. Math. 14 (1986), 401-438. DOI 10.1016/0377-0427(86)90076-2 | MR 0831083
[10] Chahlaoui, Y., Dooren, P. Van: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. SLICOT Working Note 2002-2: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction (2002).
[11] Desai, S. R., Prasad, R.: A new approach to order reduction using stability equation and big bang big crunch optimization. Systems Science Control Engineering: An Open Access J. 1 (2013), 20-27. DOI 10.1080/21642583.2013.804463
[12] Desai, S. R., Prasad, R.: Generating lower order systems using modified truncation and PSO. Int. J. Computer Appl. 12 (2013), 17-21.
[13] Dorato, P., Lepschy, A., Viaro, U.: Some comments on steady-state and asymptotic responses. IEEE Trans. Education 37 (1994), 264-268. DOI 10.1109/13.312135
[14] Ferrante, A., Krajewski, W., Lepschy, A., Viaro, U.: Convergent algorithm for $L_2$ model reduction. Automatica 35 (1999), 75-79. DOI 10.1016/s0005-1098(98)00142-3
[15] Fortuna, L., Nunnari, G., Gallo, A.: Model Order Reduction Techniques with Applications in Electrical Engineering. Springer-Verlag, London 1992. DOI 10.1007/978-1-4471-3198-4
[16] Fuhrmann, P. A.: A polynomial approach to Hankel norm and balanced approximations. Linear Algebra Appl. 146 (1991), 133-220. DOI 10.1016/0024-3795(91)90025-r | MR 1083469
[17] Gawronski, W. K.: Dynamics and Control of Structures: A Modal Approach. Springer, New York, 1998. DOI 10.1016/0024-3795(91)90025-r | MR 1641222
[18] Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds. Int. J. Control 39 (1984), 1115-1193. DOI 10.1080/00207178408933239 | MR 0748558
[19] Gu, G.: All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds in discrete time. Int. J. Control 78 (2005), 408-423. DOI 10.1080/00207170500110988 | MR 2147650
[20] Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77 (2004), 748-766. DOI 10.1080/00207170410001713448 | MR 2072207
[21] Gugercin, S., Antoulas, A., Beattie, C.: A rational Krylov iteration for optimal $H_2$ model reduction. Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 1665-1667.
[22] Gugercin, S., Antoulas, A., Beattie, C.: $H_2$ model reduction for large-scale linear dynamical systems. SIAM J. Matrix Analysis Appl. 30 (2008), 609-638. DOI 10.1137/060666123 | MR 2421462
[23] Gugercin, S., Polyuga, R. V., Beattie, C., Schaft, A. van der: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48 (2012), 1963-1974. DOI 10.1016/j.automatica.2012.05.052 | MR 2956873
[24] Huang, X. X., Yan, W. Y., Teo, K. L.: $H_2$ near-optimal model reduction. IEEE Trans. Automat. Control 46 (2001), 1279-1284. DOI 10.1109/9.940934 | MR 1847334
[25] Hutton, M. F., Friedland, B.: Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Automat. Control 20 (1975), 329-337. DOI 10.1109/tac.1975.1100953 | MR 0439332
[26] Jeltsch, R., Mansour, M., eds: Stability Theory: Hurwitz Centenary Conference 1995. Birkhäuser, Basel, Switzerland, 1996. DOI 10.1007/978-3-0348-9208-7 | MR 1416358
[27] King, A. M., Desai, U. B., Skelton, R. E.: A generalized approach to q-Markov covariance equivalent realizations for discrete systems. Automatica 24 (1988), 507-515. DOI 10.1016/0005-1098(88)90095-7 | MR 0956572
[28] Krajewski, W., Lepschy, A., Viaro, U.: Compact form of the optimality conditions for multivariable $L_2$ model reduction. Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CL (1991/92) (1992), 119-128. MR 1261290
[29] Krajewski, W., Lepschy, A., Mian, G. A., Viaro, U.: Optimality conditions in multivariable $L_2$ model reduction. J. Franklin Inst. 330 (1993), 431-439. DOI 10.1016/0016-0032(93)90090-h | MR 1216978
[30] Krajewski, W., Lepschy, A., Viaro, U.: Remarks on algorithms for $L_2$ model reduction. Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CLII (1993/1994) (1994), 99-106. MR 1353809
[31] Krajewski, W., Lepschy, A., Viaro, U.: Reduction of linear continuous-time multivariable systems by matching first- and second-order information. IEEE Trans. Automat. Control 39 (1994), 2126-2129. DOI 10.1109/9.328814 | MR 1295743
[32] Krajewski, W., Lepschy, A., Viaro, U.: Model reduction by matching Markov parameters, time moments, and impulse-response energies. IEEE Trans. Automat. Contr. 40, 949-953. DOI 10.1109/9.384238 | MR 1328099
[33] Krajewski, W., Lepschy, A., Redivo-Zaglia, M., Viaro, U.: A program for solving the L2 reduced-order problem with fixed denominator degree. Numerical Algorithms 9 (1995), 355-377. DOI 10.1007/bf02141596 | MR 1339727
[34] Krajewski, W., Viaro, U.: On MIMO model reduction by the weighted equation-error approach. Numerical Algorithms 44 (2007), 83-98. DOI 10.1007/s11075-007-9086-2 | MR 2322146
[35] Krajewski, W., Viaro, U.: Iterative-interpolation algorithms for $L_2$ model reduction. Control and Cybernetics 38 (2009), 543-554. MR 2591289
[36] Krishnamurthy, V., Seshadri, V.: Model reduction using the Routh stability criterion. IEEE Trans. Automat. Contr. 23 (1978), 729-731. DOI 10.1109/tac.1978.1101805
[37] Lepschy, A., Mian, G. A., Viaro, U.: A geometrical interpretation of the Routh test. J. Franklin Inst. 325 (1988, 695-703. DOI 10.1016/0016-0032(88)90003-8 | MR 0971159
[38] Lepschy, A., Mian, G. A., Viaro, U.: Splitting of some $s$-domain stability test algorithms. Int. J. Control 50 (1989), 2237-2247. DOI 10.1080/00207178908953495
[39] Luenberger, D. G.: Optimization by Vector Space Methods. Wiley, New York 1969. DOI 10.1137/1012072 | MR 0238472
[40] Meier, L., Luenberger, D. G.: Approximation of linear constant systems. IEEE Trans. Automat. Contr. 12 (1967), 585-588. DOI 10.1109/tac.1967.1098680
[41] Mi, W., Qian, T., Wan, F.: A fast adaptive model reduction method based on Takenaka-Malmquist systems. Systems Control Lett. 61 (2012), 223-230. DOI 10.1016/j.sysconle.2011.10.016 | MR 2878709
[42] Mittal, S. K., Chandra, D., Dwivedi, B.: A computer-aided approach for Routh-Padé approximation of SISO systems based on multi-objective optimization. Int. J. Eng. Technol. 2 (2010), 204-210. MR 2579902
[43] Moore, B. C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control 26 (1981), 17-32. DOI 10.1109/tac.1981.1102568 | MR 0609248
[44] Mukherjee, S., Satakshi, Mittal, R .C.: Model order reduction using response-matching technique. J. Franklin Inst. 342 (2005), 503-519. DOI 10.1016/j.jfranklin.2005.01.008 | MR 2150730
[45] Mullis, C. T., Roberts, R. A.: The use of second-order data in the approximation of discrete-time linear systems. IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 226-238. DOI 10.1109/tassp.1976.1162795 | MR 0497017
[46] Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39 (1997), 187-220. DOI 10.1137/s0036144595288554 | MR 1453318
[47] Panda, S., Tomar, S. K., Prasad, R., Ardil, C.: Reduction of linear time-invariant systems using Routh-approximation and PSO. Int. J. Electrical Computer Electronics and Communication Eng. 3 (2009), 20-27. MR 2482061
[48] Parmar, G., Mukherjee, S., Prasad, R.: System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Modelling 31 (2007), 2542-2552. DOI 10.1016/j.apm.2006.10.004 | Zbl 1118.93028
[49] Petersson, D., Löfberg, J.: Model reduction using a frequency-limited $H_2$ cost. Systems Control Lett. 67 (2012), 32-39. DOI 10.1016/j.sysconle.2014.02.004 | MR 3183378
[50] Qiu, L.: What can Routh table offer in addition to stability?. J. Contr. Theory Appl. 1 (2003), 9-16. DOI 10.1007/s11768-003-0003-5 | MR 2093619
[51] Ramawat, K., Kumar, A.: Improved Padé-pole clustering approach using genetic algorithm for model order reduction. Int. J. Computer Appl. 114 (2015), 24-285. DOI 10.5120/19943-1737
[52] Rana, J. S., Prasad, R., Singh, R.: Order reduction using modified pole clustering and factor division method. Int. J. Innovative Tech. Exploring Eng. 3 (2014), 134-136.
[53] Ryaben'kii, V. S., Tsynkov, S. V.: A Theoretical Introduction to Numerical Analysis. Chapman and Hall/CRC (Taylor and Francis Group), Boca Raton 2006.
[54] Rydel, M., Stanisławski, W.: Selection of fitness functions for evolutionary algorithms and their influence on the properties of a reduced mathematical MIMO model. In: Proc. IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje 2015. DOI 10.1109/mmar.2015.7283941
[55] Saini, D. K., Prasad, R.: Order reduction of linear interval systems using genetic algorithm. Int. J. Eng. Technol. 2 (2010), 316-319.
[56] Sikander, A., Prasad, R.: A novel order reduction method using cuckoo search algorithm. IETE J. Research 61 (2015), 83-90. DOI 10.1080/03772063.2015.1009396
[57] Sikander, A., Prasad, R.: Linear time invariant system reduction using mixed method approach. Appl. Math. Modelling 39 (2015), 4848-4858. DOI 10.1016/j.apm.2015.04.014 | MR 3354872
[58] Soh, C. B.: Generalization of the Hermite-Biehler theorem and applications. IEEE Trans. Automat. Control 35 (1990), 222-225. DOI 10.1109/9.45186 | MR 1038425
[59] Soloklo, H. N., Farsangi, M. M.: Order reduction by minimizing integral square error and $H_{\infty}$ norm of error. J. Adv. Computer Res. 5 (2014), 29-42.
[60] Sreeram, V., Agathoklis, P.: Model reduction of linear discrete systems via weighted impulse response Gramians. Int. J. Control 53 (1991), 129-144. DOI 10.1080/00207179108953613 | MR 1085103
[61] Tanguy, N., Iassamen, N., Telescu, M., Cloastre, P.: Parameter optimization of orthonormal basis functions for efficient rational approximations. Appl. Math. Modelling 39 (2015), 4963-4970. DOI 10.1016/j.apm.2015.04.017 | MR 3354880
[62] Dooren, P. Van, Gallivan, K. A., Absil, P. A.: $H_2$-optimal model reduction of MIMO systems. Appl. Math. Lett. 21 (2008), 1267-1273. DOI 10.1016/j.aml.2007.09.015 | MR 2464378
[63] Varga, A., Anderson, B. D. O.: Accuracy-enhancing methods for balancing-related frequency-weighted model and controller reduction. Automatica 39 (2003), 919-927. DOI 10.1016/s0005-1098(03)00030-x | MR 2138365
[64] Viaro, U.: Stability tests revisited. In: A Tribute to Antonio Lepschy (G. Picci and M. E. Valcher, eds.), Edizioni Libreria Progetto, Padova 2007, pp. 189-199.
[65] Vishwakarma, C.B., Prasad, R.: Order reduction using the advantages of differentiation method and factor division algorithm. Indian J. Engineering & Materials Sciences 15 (2008), 447-451.
[66] Xu, Y., Zeng, T.: Optimal $H_2$ model reduction for large scale MIMO systems via tangential interpolation. Int. J. Numerical Analysis and Modeling 8 (2011), 174-188. MR 2740486
[67] Wang, Y., Bernstein, D. S., Watson, L. T.: Probability-one homotopy algorithms for solving the coupled Lyapunov equations arising in reduced-order $H _2/H_{\infty}$ modeling, estimation, and control. Appl. Math Comput. 123 (2001), 155-185. DOI 10.1016/s0096-3003(00)00059-x | MR 1847909
[68] Yan, W. Y., Lam, J.: An approximate approach to $H^2$ optimal model reduction. IEEE Trans. Automat. Control 44 (1999), 1341-1358. DOI 10.1109/9.774107 | MR 1697424
[69] Zeng, C., Chen, Y. Q.: Global Padé approximations of the generalized Mittag-Leffler function and its inverse. Fractional Calculus and Applied Analysis (arXiv:1310.5592) 18 (2015), 1-15. DOI 10.1515/fca-2015-0086 | MR 3433025
[70] Zeng, T., Lu, C.: Two-sided Grassmann manifold algorithm for optimal $H_2$ model reduction. Int. J. Numerical Methods Engrg. 104 (2015), 10, 928-943. DOI 10.1515/fca-2015-0086 | MR 3416241
[71] Ziegler, J. G., Nichols, N. B.: Optimum settings for automatic controllers. Trans. ASME 64 (1942), 759-765. DOI 10.1109/tit.1972.1054906
[72] Žigić, D., Watson, L. T., Collins, E. G., Jr., Bernstein, D. S.: Homotopy methods for solving the optimal projection equations for the $H_2$ reduced order model problem. Int. J. Control 56 (1992), 173-191. DOI 10.1080/00207179208934308 | MR 1170891
Partner of
EuDML logo