Previous |  Up |  Next

Article

Keywords:
$m$-pairwise negative quadrant dependent; Marcinkiewicz–Zygmund inequality; $L^r$ convergence; complete convergence
Summary:
The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\leq p\leq2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.
References:
[1] Baek, J. I., Ko, M. H., Kim, T. S.: On the complete convergence for weighted sums of dependent random variables under condition of weighted integrability. J. Korean Math. Soc. 45 (2008), 1101-1111. DOI 10.4134/jkms.2008.45.4.1101 | MR 2422730
[2] Baek, J. I., Park, S. T.: Convergence of weighted sums for arrays of negatively dependent random variables and its applications. J. Stat. Plann. Inference 140 (2010), 2461-2469. DOI 10.1016/j.jspi.2010.02.021 | MR 2644067
[3] Cabrera, M. O., Volodin, A.: Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability. J. Math. Anal. Appl. 305 (2005), 644-658. DOI 10.1016/j.jmaa.2004.12.025 | MR 2131528
[4] Ebrahimi, N., Ghosh, M.: Multivariate negative dependence. Commun. Stat. Theory Methods 10 (1981), 307-337. DOI 10.1080/03610928108828041 | MR 0612400
[5] Gan, S., Chen, P.: Some limit theorems for sequences of pairwise NQD random variables. Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. DOI 10.1016/s0252-9602(08)60027-2 | MR 2411834
[6] Gan, S., Chen, P.: Some remarks for sequences of pairwise NQD random variables. Wuhan Univ. J. Nat. Sci. 15 (2010), 467-470. DOI 10.1007/s11859-010-0685-8 | MR 2797770
[7] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11 (1983), 286-295. DOI 10.1214/aos/1176346079 | MR 0684886
[8] Lehmann, E. L.: Some concepts of dependence. Ann. Math. Stat., 37 (1966), 1137-1153. DOI 10.1214/aoms/1177699260 | MR 0202228 | Zbl 0146.40601
[9] Liang, H., Chen, Z., Su, C.: Convergence of Jamison-type weighted sums of pairwise negatively quadrant dependent random variables. Acta Math. Appl. Sin. Engl. Ser. 18 (2002), 161-168. DOI 10.1007/s102550200014 | MR 2010903
[10] Li, R., Yang, W.: Strong convergence of pairwise NQD random sequences. J. Math. Anal. Appl. 344 (2008), 741-747. DOI 10.1016/j.jmaa.2008.02.053 | MR 2426304
[11] Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15 (1992), 209-213. DOI 10.1016/0167-7152(92)90191-7 | MR 1190256 | Zbl 0925.60024
[12] Meng, Y., Lin, Z.: On the weak laws of large numbers for arrays of random variables. Statist. Probab. Lett. 79 (2009), 2405-2414. DOI 10.1016/j.spl.2009.08.014 | MR 2556321
[13] Nelsen, R. B.: An introduction to Copulas. Second edition. Springer, New York 2006. DOI 10.1007/0-387-28678-0 | MR 2197664
[14] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Inequalities in Statistics and Probability (Y. L. Tong, ed.), IMS Lecture Notes Monogr. Ser. 5, 1984, pp. 127-140. DOI 10.1214/lnms/1215465639 | MR 0789244
[15] Sung, H. S.: Convergence in $r$-mean of weighted sums of NQD random variables. Appl. Math. Lett. 26 (2013), 18-24. DOI 10.1016/j.aml.2011.12.030 | MR 2971393
[16] Sung, H. S., Lisawadi, S., Volodin, A.: Weak laws of large numbers for arrays under a condition of uniform integrability. J. Korean Math. Soc. 45 (2008), 289-300. DOI 10.4134/jkms.2008.45.1.289 | MR 2375136
[17] Wu, Y., Rosalsky, A.: Strong convergence for $m$-pairwise negatively quadrant dependent random variables. Glasnik Matematicki 50 (2015), 245-259. DOI 10.3336/gm.50.1.15 | MR 3361275
[18] Wu, Q.: Convergence properties of pairwise NQD random sequences. Acta Math. Sin. Engl. Ser. 45 (2002), 617-624 (in Chinese). MR 1915127
[19] Wu, Y., Guan, M.: Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables. J. Math. Anal. Appl. 377 (2011), 613-623. DOI 10.1016/j.jmaa.2010.11.042 | MR 2769161
[20] Wu, Q., Jiang, Y.: The strong law of large numbers for pairwise NQD random variables. J. Syst. Sci. Complex. 24 (2011), 347-357. DOI 10.1007/s11424-011-8086-4 | MR 2802568
[21] Wu, Y., Wang, D.: Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. Appl. Math., Praha 57 (2012), 463-476. DOI 10.1007/s10492-012-0027-6 | MR 2984614
Partner of
EuDML logo