Previous |  Up |  Next

Article

Keywords:
multimodal distributions; cusp model; bimodality test; reduced maximum likelihood estimation
Summary:
The probability density function of the stochastic cusp model belongs to the class of generalized exponential distributions. It accommodates variable skewness, kurtosis, and bimodality. A statistical test for bimodality of the stochastic cusp model using the maximum likelihood estimation and delta method for Cardan's discriminant is introduced in this paper, as is a necessary condition for bimodality, which can be used for simplified testing to reject bimodality. Numerical maximum likelihood estimation of the cusp model is simplified by analytical reduction of the parameter space dimension, and connection to the method of moment estimates is shown. A simulation study is used to determine the size and power of the proposed tests and to compare pertinence among different tests for various parameter settings.
References:
[1] Arnold, V. I.: Catastrophe Theory. Springer-Verlag, Berlin 1992. DOI 10.1007/978-3-642-58124-3 | MR 1178935
[2] Barunik, J., Kukačka, J.: Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility. Quantitative Finance 15 (2015), 959-973. DOI 10.1080/14697688.2014.950319 | MR 3344222
[3] Barunik, J., Vošvrda, M.: Can a stochastic cusp catastrophe model explain stock market crashes?. J. Economic Dynamics Control 33 (2009), 1824-1836. DOI 10.1016/j.jedc.2009.04.004 | MR 2569497
[4] Cobb, L.: Stochastic catastrophe models and multimodal distributions. Behavioral Sci. 23 (1978), 360-374. DOI 10.1002/bs.3830230407 | MR 0517512
[5] Cobb, L., Watson, B.: Statistical catastrophe theory: An overview. Math. Modell. 1 (1980), 311-317. DOI 10.1016/0270-0255(80)90041-x | MR 0651732
[6] Cobb, L.: Parameter estimation for the cusp catastrophe model. Behavioral Sci. 26 (1981), 75-78. DOI 10.1002/bs.3830260107
[7] Cobb, L., Koppstein, P., Chen, N. H.: Estimation and moment recursion relations for multimodal distributions of the exponential family. J. Amer. Statist. Assoc. 78 (1983), 124-130. DOI 10.2307/2287118 | MR 0696856
[8] Creedy, J., Lye, J., Martin, V.: A non-linear model of the real US/UK exchange rate. Econom. Modell. 11 (1996), 669-686. DOI 10.1002/(sici)1099-1255(199611)11:6<669::aid-jae415>3.0.co;2-5
[9] Diks, C., Wang, J.: Can a stochastic cusp catastrophe model explain housing market crashes?. J. Econom. Dynamics Control 69 (2016), 68-88. DOI 10.1016/j.jedc.2016.05.008
[10] Fernandes, M.: Financial crashes as endogenous jumps: estimation, testing and forecasting. J. Econom. Dynamics Control 30 (2006), 111-141. DOI 10.1016/j.jedc.2004.11.005 | MR 2192107
[11] Grasman, R. P. P. P., Maas, H. L. J. van der, Wagenmakers, E. J.: Fitting the cusp catastrophe in R: A cusp package primer. J. Statist. Software 32 (2009), 1-28. DOI 10.18637/jss.v032.i08
[12] Hartigan, J. A., Hartigan, P. M.: The dip test of unimodality. Ann. Statist. 13 (1985), 70-84. DOI 10.1214/aos/1176346577 | MR 0773153
[13] Kodde, D. A., Palm, F. C.: Wald criteria for jointly testing equality and inequality restrictions. Econometrica 54 (1986), 1243-1248. DOI 10.2307/1912331 | MR 0859464
[14] Koh, S. K., Fong, W. M., Chan, F.: A Cardans discriminant approach to predicting currency crashes. J. Int. Money Finance 26 (2007), 131-148. DOI 10.1016/j.jimonfin.2006.08.001
[15] Lehman, E. L., Romano, J. P.: Testing Statistical Hypotheses. Third edition. Springer-Verlag, New York 2005. DOI 10.1007/0-387-27605-x | MR 2135927
[16] Matz, A. W.: Maximum likelihood parameter estimation for the quartic exponential distribution. Technometrics 20 (1978), 475-484. DOI 10.1080/00401706.1978.10489702
[17] Thom, R.: Structural Stability and Morpohogenesis. W. A. Benjamin, New York 1975. MR 0488156
Partner of
EuDML logo