Previous |  Up |  Next

Article

Keywords:
$C^{1;1}$–function; ${\ell }$–stable function; generalized second-order derivative; optimality conditions
Summary:
Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for ${\ell}$-stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.
References:
[1] Bednařík, D., Berková, A.: On some properties of l-stable functions. In: Proc. 14th WSEAS Inter. Conf. on Math. Methods, Comput. Techniques and Intell. Systems, (A J. Viamonte, ed.), Porto 2012.
[2] Bednařík, D., Pastor, K.: On second-order conditions in unconstrained optimization. Math. Program. (Ser. A) 113 (2008), 283-298. DOI 10.1007/s10107-007-0094-8 | MR 2375484 | Zbl 1211.90276
[3] Bednařík, D., Pastor, K.: Differentiability properties of functions that are ${\ell}$-stable at a point. Nonlinear Anal. 69 (2008), 3128-3135. DOI 10.1016/j.na.2007.09.006 | MR 2452120 | Zbl 1146.49017
[4] Bednařík, D., Pastor, K.: $\ell$-stable functions are continuous. Nonlinear Anal. 70 (2009), 2317-2324. DOI 10.1016/j.na.2008.03.011 | MR 2498316
[5] Bednařík, D., Pastor, K.: Fréchet approach in second-order optimization. App. Math. Lett. 22 (2009), 960-967. DOI 10.1016/j.aml.2009.01.019 | MR 2524094
[6] Bednařík, D., Pastor, K.: A note on second-order optimality conditions. Nonlinear Anal. 71 (2009), 1964-1969. DOI 10.1016/j.na.2009.01.035 | MR 2524410
[7] Bednařík, D., Pastor, K.: ${\ell}$-stable functions are continuous. Nonlinear Anal. 70 (2009), 2317-2324. DOI 10.1016/j.na.2008.03.011 | MR 2498316
[8] Bednařík, D., Pastor, K.: On l-stable mappings with values in infinite dimensional Banach spaces. Nonlinear Anal. 72 (2010), 1198-1209. DOI 10.1016/j.na.2009.08.004 | MR 2577520
[9] Bednařík, D., Pastor, K.: On second-order condition in constrained vector optimization. Nonlinear Anal. 74 (2011), 1372-1382. DOI 10.1016/j.na.2010.10.009 | MR 2746815
[10] Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28 (1990), 789-809. DOI 10.1137/0328045 | MR 1051624 | Zbl 0714.49020
[11] Chan, W. L., Huang, L. R., Ng, K. F.: On generalized second-order derivatives and Taylor expansions in nonsmooth optimization. SIAM J. Control Optim. 32 (1994), 591-611. DOI 10.1137/s0363012992227423 | MR 1269984 | Zbl 0801.49016
[12] Dvorská, M., Pastor, K.: On comparison of $\ell$-stable vector optimization results. Math. Slovaca 64 (2014), 4, 1-18. DOI 10.2478/s12175-014-0252-4 | MR 3255866
[13] Dvorská, M., K., K. Pastor: Generalization of $C^{1,1}$ property in infinite dimension. Acta Math. Vietnam. 41 (2016), 265-275. DOI 10.1007/s40306-015-0129-9 | MR 3506315
[14] Demyanov, V. F., Rubinov, M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main 1995. MR 1325923
[15] Ginchev, I.: On scalar and vector $\ell$-stable functions. Nonlinear Anal. 74 (2011), 182-194. DOI 10.1016/j.na.2010.08.032 | MR 2734988
[16] Ginchev, I., Guerraggio, A.: Second-order conditions for constrained vector optimization problems with ${\ell}$-stable data. Optimization 60 (2011), 179-199. DOI 10.1080/02331930903578718 | MR 2772143 | Zbl 1237.90221
[17] Ginchev, I., Guerraggio, A., Rocca, M.: From scalar to vector optimization. Appl. Math. 51 (2006), 5-36. DOI 10.1007/s10492-006-0002-1 | MR 2197320 | Zbl 1164.90399
[18] Guerragio, A., Luc, D. T.: Optimality conditions for $C^{1,1}$ vector optimization problems. J. Optim. Theory Appl. 109 (2001), 615-629. DOI 10.1023/a:1017519922669 | MR 1835076
[19] Georgiev, P. G., Zlateva, N. P.: Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions. Set-Valued Anal. 4 (1996), 101-117. DOI 10.1007/bf00425960 | MR 1394408
[20] Hiriart-Urruty, J. B., Strodiot, J. J., Nguyen, V. H.: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optim. 11 (1984), 43-56. DOI 10.1007/bf01442169 | MR 0726975
[21] Ivanov, V. I.: Second-optimality conditions with arbitrary nondifferentiable function in scalar and vector optimization. Nonlinear Anal. 125 (2015), 270-289. DOI 10.1016/j.na.2015.05.030 | MR 3373585
[22] Jahn, J.: Vector Optimization. Springer-Verlag, New York 2004. DOI 10.1007/978-3-540-24828-6 | MR 2058695 | Zbl 1298.90092
[23] Jeyakumar, V., Luc, D. T.: Nonsmooth Vector Functions And Continuous Optimization. Springer, Berlin 2008. MR 2354918
[24] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming I: ${\ell}$-stability and set-valued directional derivatives. J. Math. Anal. Appl. 403 (2013), 695-702. DOI 10.1016/j.jmaa.2012.12.076 | MR 3037499
[25] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: Optimality conditions. J. Math. Anal. Appl. 403 (2013), 703-714. DOI 10.1016/j.jmaa.2012.12.075 | MR 3037500 | Zbl 1291.90225
[26] Liu, L., Křížek, M.: The second-order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data. Appl. Math. 42 (1997), 311-320. DOI 10.1023/a:1023068513188 | MR 1453935
[27] Liu, L., Neittaanmäki, P., Křížek, M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data. Appl. Math. 45 (2000), 381-397. DOI 10.1023/a:1022272728208 | MR 1777017
[28] Li, S. J., Xu, S.: Sufficient conditions of isolated minimizers for constrained programming problems. Numer. Func. Anal. Optim. 31 (2010), 715-727. DOI 10.1080/01630563.2010.490970 | MR 2682838 | Zbl 1218.90214
[29] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer-Verlag, Berlin 2006. MR 2191744 | Zbl 1100.49002
[30] Pastor, K.: A note on second-order optimality conditions. Nonlinear Anal. 71 (2009), 1964-1969. DOI 10.1016/j.na.2009.01.035 | MR 2524410
[31] Pastor, K.: Differentiability properties of ${\ell}$-stable vector functions in infinite-dimensional normed spaces. Taiwanese J. Math. 18 (2014), 187-197. DOI 10.11650/tjm.18.2014.2605 | MR 3162119
[32] Rockafellar, R. T.: Convex analysis. Princeton University Press, Princeton 1970. MR 0274683
[33] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, New York 1998. DOI 10.1007/978-3-642-02431-3 | Zbl 0888.49001
[34] Torre, D. L., Rocca, M.: Remarks on second order generalized derivatives for differentiable functions with Lipschitzian jacobian. Appl. Math. E-Notes 3 (2003), 130-137. MR 1995642
[35] Yang, X. Q.: On second-order directional derivatives. Nonlinear Anal. 26 (1996), 55-66. DOI 10.1016/0362-546x(94)00209-z | MR 1354791
[36] Yang, X. Q.: On relations and applications of generalized second-order directional derivatives. Nonlinear Anal. 36 (1999), 595-614. DOI 10.1016/s0362-546x(98)00174-6 | MR 1673263
Partner of
EuDML logo