[1] Chang, H. S.:
Perfect information two-person zero-sum Markov games with imprecise transition probabilities. Math. Meth. Oper. Res. 64 (2006), 235-351.
DOI 10.1007/s00186-006-0081-5 |
MR 2264789
[7] Gordienko, E. I.:
Adaptive strategies for certain classes of controlled Markov processes. Theory Probab. Appl. 29 (1985), 504-518.
DOI 10.1137/1129064 |
MR 0761133
[8] Gordienko, E. I., Hernández-Lerma, O.:
Average cost Markov control processes with weighted norms: existence of canonical policies. Appl. Math. 23 (1995), 199-218.
MR 1341223 |
Zbl 0829.93067
[9] Gordienko, E. I., Hernández-Lerma, O.:
Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219-237.
MR 1341224
[11] Hilgert, N., Minjárez-Sosa, J. A.:
Adaptive control of stochastic systems with unknown disturbance distribution: discounted criterion. Math. Meth. Oper. Res. 63 (2006), 443-460.
DOI 10.1007/s00186-005-0024-6 |
MR 2264761
[15] Minjárez-Sosa, J. A.:
Nonparametric adaptive control for discrete-time Markov processes with unbounded costs under average criterion. Appl. Math. (Warsaw) 26 (1999), 267-280.
DOI 10.4064/am-26-3-267-280 |
MR 1725752
[16] Minjárez-Sosa, J. A., Vega-Amaya, O.:
Asymptotically optimal strategies for adaptive zero-sum discounted Markov games. SIAM J. Control Optim. 48 (2009), 1405-1421.
DOI 10.1137/060651458 |
MR 2496982
[18] Minjárez-Sosa, J. A., Luque-Vásquez, F.:
Two person zero-sum semi-Markov games with unknown holding times distribution on one side: discounted payoff criterion. Appl. Math. Optim. 57 (2008), 289-305.
DOI 10.1007/s00245-007-9016-7 |
MR 2407314
[20] Prieto-Rumeau, T., Lorenzo, J. M.:
Approximation of zero-sum continuous-time Markov games under the discounted payoff criterion. TOP 23 (2015), 799-836.
DOI 10.1007/s11750-014-0354-8 |
MR 3407676
[21] Shimkin, N., Shwartz, A.:
Asymptotically efficient adaptive strategies in repeated games. Part I: Certainty equivalence strategies. Math. Oper. Res. 20 (1995), 743-767.
DOI 10.1287/moor.20.3.743 |
MR 1354780
[22] Shimkin, N., Shwartz, A.:
Asymptotically efficient adaptive strategies in repeated games. Part II: Asymptotic optimality. Math. Oper. Res. 21 (1996), 487-512.
DOI 10.1287/moor.21.2.487 |
MR 1397226
[23] Schäl, M.:
Conditions for optimality and for the limit of $n$-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32 (1975), 179-196.
DOI 10.1007/bf00532612 |
MR 0378841