[5] Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.:
Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33 (2013), 343-369.
DOI 10.1093/imanum/drs001 |
MR 3020961 |
Zbl 1271.65100
[7] Bai, Z.-Z., Golub, G. H., Ng, M. K.:
On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14 (2007), 319-335 erratum ibid. 19 2012 891.
DOI 10.1002/nla.517 |
MR 2310394 |
Zbl 1199.65097
[11] Du, L., Futamura, Y., Sakurai, T.:
Block conjugate gradient type methods for the approximation of bilinear form $C^H A^{-1} B$. Comput. Math. Appl. 66 (2014), 2446-2455.
DOI 10.1016/j.camwa.2013.09.023 |
MR 3128571
[12] Dubrulle, A. A.:
Retooling the method of block conjugate gradients. ETNA, Electron. Trans. Numer. Anal. 12 (2001), 216-233.
MR 1847919 |
Zbl 0985.65021
[14] Eisenstat, S. C., Elman, H. C., Schultz, M. H.:
Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983), 345-357.
DOI 10.1137/0720023 |
MR 0694523 |
Zbl 0524.65019
[21] Nikishin, A. A., Yeremin, A. Y.:
Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers. I. General iterative scheme. SIAM J. Matrix Anal. Appl. 16 (1995), 1135-1153.
DOI 10.1137/S0895479893247679 |
MR 1351461 |
Zbl 0837.65029
[25] Saad, Y., Schultz, M. H.:
GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986), 856-869.
DOI 10.1137/0907058 |
MR 0848568 |
Zbl 0599.65018
[29] Tadano, H., Sakurai, T.: A block Krylov subspace method for the contour integral method and its application to molecular orbital computations. IPSJ Trans. Adv. Comput. Syst. 2 (2009), 10-18 Japanese.
[30] Vorst, H. A. van der:
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the Solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992), 631-644.
DOI 10.1137/0913035 |
MR 1149111 |
Zbl 0761.65023
[31] Vorst, H. A. van der, Melissen, J. B. M.:
A Petrov-Galerkin type method for solving $Axk=b$, where $A$ is symmetric complex. IEEE Transactions on Magnetics 26 (1990), 706-708.
DOI 10.1109/20.106415