[1] Aishima, K., Matsuo, T., Murota, K., Sugihara, M.:
A survey on convergence theorems of the dqds algorithm for computing singular values. J. Math-for-Ind. 2 (2010), 1-11.
MR 2639360 |
Zbl 1210.65088
[4] Golub, G. H., Loan, C. F. Van:
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (2013).
MR 3024913 |
Zbl 1268.65037
[5] Householder, A. S.:
The Numerical Treatment of a Single Nonlinear Equation. International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1970).
MR 0388759 |
Zbl 0242.65047
[9] Kimura, K., Yamashita, T., Nakamura, Y.:
Conserved quantities of the discrete finite Toda equation and lower bounds of the minimal singular value of upper bidiagonal matrices. J. Phys. A, Math. Theor. 44 (2011), Article ID 285207, 12 pages.
DOI 10.1088/1751-8113/44/28/285207 |
MR 2812341 |
Zbl 1223.37068
[11] Yamashita, T., Kimura, K., Nakamura, Y.:
Subtraction-free recurrence relations for lower bounds of the minimal singular value of an upper bidiagonal matrix. J. Math-for-Ind. 4 (2012), 55-71.
MR 2912032 |
Zbl 1302.15012
[12] Yamashita, T., Kimura, K., Takata, M., Nakamura, Y.:
An application of the Kato-Temple inequality on matrix eigenvalues to the dqds algorithm for singular values. JSIAM Lett. 5 (2013), 21-24.
DOI 10.14495/jsiaml.5.21 |
MR 3035546
[14] Wilkinson, J. H.:
The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis, Oxford Science Publications, Clarendon Press, Oxford (1988).
MR 0950175 |
Zbl 0626.65029