[1] Adler, S. L.: Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177 (1969), 2426–2438.
[2] Avron, J. E., Osadchy, D, Seiler, R.:
A topological look at the quantum Hall effect. Physics Today 56 (2003), 38–42.
DOI 10.1063/1.1611351
[3] D’yakonov, M. I., Perel’, V. I.: Possibility of orienting electron spins with current. Sov. Phys. JETP Lett. 13 (1971), 467–469.
[4] Fu, L.: Topological crystalline insulators. Phys. Rev. Lett. [online] 106 (2011), paper No. 106802.
[5] Fu, L., Kane, C., Mele, E.: Topological insulators in three dimensions. Phys. Rev. Lett. [online] 98 (2007), paper No. 106803.
[6] Haldane, F. D. M.: Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61 (1988), 2015–2018.
[7] Haldane, F. D. M.: Topological states of quantum condensed matter. Plenary talk at APS March Meeting (2017).
[8] Hasan, M., Kane, C.: Colloquium: topological insulators. Rev. Modern Phys. 82 (2010), 3045–3067.
[9] Hatsugai, Y.:
Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71 (1993), 3697–3700.
MR 1246070 |
Zbl 0972.81712
[10] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., Hasan, M. Z.:
A topological Dirac insulator in a quantum spin Hall phase. Nature 452 (2008), 970–974.
DOI 10.1038/nature06843
[11] Hsieh, T. H., Lin, H., Liu, J., Duan, W., Bansil, A., Fu, L.: Topological crystalline insulators in the SnTe material class. Nature Comms. [online] 3 (2012), paper No. 982.
[12] Jeon, S., Zhou, B. B., Gyenis, A., Feldman, B. E., Kimchi, I., Potter, A. C., Gibson, Q. D., Cava, R. J., Vishwanath, A., Yazdani, A.: Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd$_3$As$_2$. Nature Mater. 13 (2014), 851–856.
[13] Kane, C. L., Mele, E. J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. [online] 95 (2005), paper No. 226801.
[14] Kane, C. L., Mele, E. J.: Z$_2$ topological order and the quantum spin Hall effect. Phys. Rev. Lett. [online] 95 (2005), paper No. 146802.
[15] Kato, Y. K., Myers, R. C., Gossard, A. C., Awschalom, D. D.: Observation of the spin Hall effect in semiconductors. Science 306 (2004), 1910–1913.
[16] Klitzing, K. von, Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45 (1980), 494–497.
[17] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., Zhang, S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318 (2007), 766–770.
[18] Liu, Z. K., Zhou, B., Zhang, Y., Wang, Z. J., Weng, H. M., Prabhakaran, D., Mo, S.-K., Shen, Z. X., Fang, Z., Dai, X., Hussain, Z., Chen, Y. L.: Discovery of a three-dimensional topological Dirac semimetal, Na$_3$Bi. Science 343 (2014), 864–867.
[19] Moore, J. E., Balents, L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B [online] 75 (2007), paper No. 121306.
[20] Rauch, T., Flieger, M., Henk, J., Mertig, I., Ernst, A.: Dual topological character of chalcogenides: theory for Bi$_2$Te$_3$. Phys. Rev. Lett. [online] 112 (2014), paper No. 016802.
[21] Středa, P.: Kvantové Hallovy jevy. Pokroky Mat. Fyz. Astronom. 44 (1999), 177–186.
[22] Teo, J., Fu, L., Kane, C.: Surface states and topological invariants in three-dimensional topological insulators: Application to Bi$_{1-x}$Sb$_{x}$. Phys. Rev. B [online] 78 (2008), paper No. 045426.
[23] Thouless, D. J., Kohmoto, M., Nightingale, M. P., Nijs, M. den: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49 (1982), 405–408.
[24] Wunderlich, J., Kaestner, B., Sinova, J., Jungwirth, T.: Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. [online] 94 (2005), paper No. 047204.
[25] Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., Hasan, M. Z.:
Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5 (2009), 398–402.
DOI 10.1038/nphys1274
[26] Xu, S.-Y., Alidoust, N., Belopolski, I., Yuan, Z., Bian, G., Chang, T.-R., Zheng, H., Strocov, V. N., Sanchez, D. S., Chang, G., Zhang, C., Mou, D., Wu, Y., Huang, L., Lee, C.-C., Huang, S.-M., Wang, B., Bansil, A., Jeng, H.-T, Neupert, T., Kaminski, A., Lin, H., Jia, S., Hasan, M. Z.: Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Phys. 11 (2015), 748–754.
[27] Yang, L. X., Liu, Z. K., Sun, Y., Peng, H., Yang, H. F., Zhang, T., Zhou, B., Zhang, Y., Guo, Y. F., Rahn, M., Prabhakaran, D., Hussain, Z., Mo, Z.-K., Felser, C., Yan, B., Chen, Y. L.:
Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nature Phys. 11 (2015), 728–732.
DOI 10.1038/nphys3425
[28] Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z, Zhang, S.-C.: Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface. Nature Phys. 5 (2009), 438–442.