[1] Bose, N.:
Digital filters: theory and applications. North-Holland, Amsterdam, 1985.
Zbl 0588.94011
[2] Feinsilver, P., Kocik, J.:
Krawtchouk matrices from classical and quantum random walks. In Viana, M. A. G., Richards, D. P. (eds.): Algebraic Methods in Statistics and Probability, AMS, 2001, 83–96.
MR 1873669 |
Zbl 1014.60049
[3] Feinsilver, P., Kocik, J.:
Krawtchouk polynomials and Krawtchouk matrices. In Baeza-Yates, R., Glaz, J., Gzyl, H., Hüsler, J., Palacios, J. L. (eds.): Recent Advances in Applied Probability, Springer-Verlag, Boston, 2005, 115–141.
MR 2102950 |
Zbl 1075.33003
[4] Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. des Sci. Math. 17 (1893), 240–246.
[5] Horadam, K. J.:
Hadamard matrices and their applications. Princeton University Press, Princeton, 2006.
MR 2265694
[7] Kac, M.:
Probability and related topics in physical sciences. Interscience Publishers, New York, 1959.
MR 0106225 |
Zbl 0087.33003
[9] Kocik, J.:
Krawtchouk matrices, Feynman path integral and the split quaternions. In Budzban, G., Hughes, H. R., Schurz, H., (eds.): Probability on algebraic and geometric structures, AMS, 2016, 131–164.
MR 3536697
[10] Krawtchouk, M.: Sur une généralisation des polynomes d’Hermite. C. R. Acad. Sci. 189 (1929), 620–622.
[11] Krawtchouk, M.:
Sur la distribution des racines des polynomes orthogonaux. C. R. Acad. Sci. 196 (1933), 739–741.
Zbl 0006.19601
[12] Lampio, P. H. J.: Classificaton of difference matrices and complex Hadamard matrices. Aalto University publication series Doctoral dissertations 177/2015, Helsinki, 2015.
[16] Seberry, J., Yamada, M.:
Hadamard matrices, sequences, and block designs. In Stinson, D. J., Dinitz, J. (eds.): Contemporary Design Theory–A Collection of Surveys, John Wiley, 1992, 431–560.
MR 1178508 |
Zbl 0776.05028
[18] Sylvester, J. J.: Théorème sur les déterminants. Nouvelles Ann. Math. 13 (1854), 305.
[19] Sylvester, J. J.: Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Phil. Mag. 34 (1867), 461–475.
[20] Štěpánová, M.: Olga Taussky-Todd: z Olomouce do Pasadeny. Pokroky Mat. Fyz. Astronom. 61 (2016), 197–213.
[21] Taussky-Todd, O., Todd, J.:
Another look at a matrix of Mark Kac. Linear Algebra Appl. 150 (1991), 341–360.
MR 1102076