Previous |  Up |  Next

Article

Keywords:
ideals on natural numbers; ultrafilter topology
Summary:
This note is devoted to combinatorial properties of ideals on the set of natural numbers. By a result of Mathias, two such properties, selectivity and density, in the case of definable ideals, exclude each other. The purpose of this note is to measure the ``distance'' between them with the help of ultrafilter topologies of Louveau.
References:
[1] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line. A K Peters, Wellesley, MA, 1995. MR 1350295
[2] Grigorieff S.: Combinatorics on ideals and forcing. Ann. Math. Logic 3 (1971), 363–394. DOI 10.1016/0003-4843(71)90011-8 | MR 0297560 | Zbl 0328.02041
[3] Kechris A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156, Springer, New York, 1995. MR 1321597 | Zbl 0819.04002
[4] Laflamme C.: Filter games and combinatorial properties of winning strategies. Contemp. Math. 192 (1996), 51–67. DOI 10.1090/conm/192/02348 | MR 1367134
[5] Louveau A.: Une métode topologique pour l'étude de la propriété de Ramsey. Israel J. Math. 23 (1976), 97–116. DOI 10.1007/BF02756789 | MR 0411971
[6] Mathias A.R.D.: Happy families. Ann. Math. Logic 12 (1977), no. 1, 59–111. DOI 10.1016/0003-4843(77)90006-7 | MR 0491197 | Zbl 0369.02041
[7] Thümmel E.: Ramsey theorems and topological dynamics. PhD. Thesis, Charles University of Prague, 1996.
[8] Todorčević S.: Topics in Topology. Lecture Notes in Mathematics, 1652, Springer, Berlin, 1997. DOI 10.1007/BFb0096295 | MR 1442262 | Zbl 0953.54001
[9] Todorčević S.: Oscillations of sets of integers. Adv. in Appl. Math. 20 (1998), no. 2, 220–252. DOI 10.1006/aama.1997.0572 | MR 1601383
[10] Todorčević S.: Introduction to Ramsey Spaces. Annals of Mathematics Studies, 174, Princeton University Press, Princeton, 2010. MR 2603812
Partner of
EuDML logo