Article
Keywords:
Axiom of Choice; weak axioms of choice; linear equations with coefficients in $\mathbb{Z}$; infinite systems of linear equations over $\mathbb{Z}$; non-trivial solution of a system in $\mathbb{Z}$; permutation models of $\mathsf{ZFA}$; symmetric models of $\mathsf{ZF}$
Summary:
We investigate the question whether a system $(E_i)_{i\in I}$ of homogeneous linear equations over $\mathbb{Z}$ is non-trivially solvable in $\mathbb{Z}$ provided that each subsystem $(E_j)_{j\in J}$ with $|J|\le c$ is non-trivially solvable in $\mathbb{Z}$ where $c$ is a fixed cardinal number such that $c< |I|$. Among other results, we establish the following. (a) The answer is `No' in the finite case (i.e., $I$ being finite). (b) The answer is `No' in the denumerable case (i.e., $|I|=\aleph_{0}$ and $c$ a natural number). (c) The answer in case that $I$ is uncountable and $c\le\aleph_{0}$ is `No relatively consistent with $\mathsf{ZF}$', but is unknown in $\mathsf{ZFC}$. For the above case, we show that ``every uncountable system of linear homogeneous equations over $\mathbb{Z}$, each of its countable subsystems having a non-trivial solution in $\mathbb{Z}$, has a non-trivial solution in $\mathbb{Z}$'' implies (1) the Axiom of Countable Choice (2) the Axiom of Choice for families of non-empty finite sets (3) the Kinna--Wagner selection principle for families of sets each order isomorphic to $\mathbb{Z}$ with the usual ordering, and is not implied by (4) the Boolean Prime Ideal Theorem ($\mathsf{BPI}$) in $\mathsf{ZF}$ (5) the Axiom of Multiple Choice ($\mathsf{MC}$) in $\mathsf{ZFA}$ (6) $\mathsf{DC}_{<\kappa}$ in $\mathsf{ZF}$, for every regular well-ordered cardinal number $\kappa$. We also show that the related statement ``every uncountable system of linear homogeneous equations over $\mathbb{Z}$, each of its countable subsystems having a non-trivial solution in $\mathbb{Z}$, has an uncountable subsystem with a non-trivial solution in $\mathbb{Z}$'' (1) is provable in $\mathsf{ZFC}$ (2) is not provable in $\mathsf{ZF}$ (3) does not imply ``every uncountable system of linear homogeneous equations over $\mathbb{Z}$, each of its countable subsystems having a non-trivial solution in $\mathbb{Z}$, has a non-trivial solution in $\mathbb{Z}$'' in $\mathsf{ZFA}$.
References:
[3] Herrlich H.:
Axiom of Choice. Lecture Notes in Mathematics, 1876, Springer, Berlin, 2006.
MR 2243715 |
Zbl 1102.03049
[8] Jech T.J.:
The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, 75, North-Holland, Amsterdam, 1973; reprint: Dover Publications, Inc., New York, 2008.
MR 0396271 |
Zbl 0259.02052
[9] Jech T.J.:
Set Theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2003.
MR 1940513 |
Zbl 1007.03002
[10] Kunen K.:
Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam, 1980.
MR 0597342 |
Zbl 0534.03026