Previous |  Up |  Next

Article

Title: Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces (English)
Author: Li, Wenchang
Author: Xu, Jingshi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 497-513
Summary lang: English
.
Category: math
.
Summary: Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given. (English)
Keyword: weak Lebesgue space
Keyword: Triebel-Lizorkin space
Keyword: equivalent norm
Keyword: maximal function
Keyword: atom
MSC: 42B25
MSC: 42B35
MSC: 46E35
idZBL: Zbl 06738533
idMR: MR3661055
DOI: 10.21136/CMJ.2017.0037-16
.
Date available: 2017-06-01T14:31:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146770
.
Reference: [1] Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability.J. Funct. Anal. 258 (2010), 1628-1655. Zbl 1194.46045, MR 2566313, 10.1016/j.jfa.2009.09.012
Reference: [2] Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability.J. Funct. Anal. 256 (2009), 1731-1768. Zbl 1179.46028, MR 2498558, 10.1016/j.jfa.2009.01.017
Reference: [3] Drihem, D.: Some embeddings and equivalent norms of the $\mathcal L^{\lambda,s}_{p,q}$ spaces.Funct. Approximatio, Comment. Math. 41 (2009), 15-40. Zbl 1188.46020, MR 2568794, 10.7169/facm/1254330157
Reference: [4] Drihem, D.: Characterizations of Besov-type and Triebel-Lizorkin-type spaces by differences.J. Funct. Spaces Appl. 2012 (2012), Article ID 328908, 24 pages. Zbl 1242.46038, MR 2873709, 10.1155/2012/328908
Reference: [5] Drihem, D.: Atomic decomposition of Besov-type and Triebel-Lizorkin-type spaces.Sci. China, Math. 56 (2013), 1073-1086. Zbl 1273.46024, MR 3047054, 10.1007/s11425-012-4425-8
Reference: [6] Frazier, M., Jawerth, B.: Decomposition of Besov spaces.Indiana Univ. Math. J. 34 (1985), 777-799. Zbl 0551.46018, MR 0808825, 10.1512/iumj.1985.34.34041
Reference: [7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), 34-170. Zbl 0716.46031, MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [8] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces.CBMS Regional Conference Series in Mathematics 79, American Mathematical Society, Providence (1991). Zbl 0757.42006, MR 1107300, 10.1090/cbms/079
Reference: [9] Grafakos, L., He, D.: Weak Hardy spaces.Some Topics in Harmonic Analysis and Applications Advanced Lectures in Mathematics 34, International Press, Higher Education Press, Beijing 177-202 J. Li et al. (2016). Zbl 1345.42026, MR 3525560
Reference: [10] He, D.: Square function characterization of weak Hardy spaces.J. Fourier Anal. Appl. 20 (2014), 1083-1110. Zbl 1309.42027, MR 3254613, 10.1007/s00041-014-9346-1
Reference: [11] Kempka, H.: 2-microlocal Besov and Triebel-Lizorkin spaces of variable integrability.Rev. Mat. Complut. 22 (2009), 227-251. Zbl 1166.42011, MR 2499334, 10.5209/rev_REMA.2009.v22.n1.16353
Reference: [12] Kempka, H.: Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability.Funct. Approximatio, Comment. Math. 43 (2010), 171-208. Zbl 1214.46020, MR 2767169, 10.7169/facm/1291903396
Reference: [13] Kyriazis, G.: Decomposition systems for function spaces.Stud. Math. 157 (2003), 133-169. Zbl 1050.42027, MR 1981430, 10.4064/sm157-2-3
Reference: [14] Peetre, J.: On spaces of Triebel-Lizorkin type.Ark. Mat. 13 (1975), 123-130. Zbl 0302.46021, MR 0380394, 10.1007/BF02386201
Reference: [15] Rychkov, V. S.: On a theorem of Bui, Paluszyński, and Taibleson.Proc. Steklov Inst. Math. 227 (1999), 280-292 translation from Tr. Mat. Inst. Steklova 227 1999 286-298. Zbl 0979.46019, MR 1784322
Reference: [16] Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel-Lizorkin-type spaces.J. Math. Anal. Appl. 363 (2010), 73-85. Zbl 1185.42022, MR 2559042, 10.1016/j.jmaa.2009.08.002
Reference: [17] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972
Reference: [18] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78, Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1
Reference: [19] Triebel, H.: Theory of Function Spaces II.Monographs in Mathematics 84, Birkhäuser, Basel (1992). Zbl 0763.46025, MR 1163193, 10.1007/978-3-0346-0419-2
Reference: [20] Triebel, H.: Fractals and Spectra: Related to Fourier Analysis and Function Spaces.Monographs in Mathematics 91, Birkhäuser, Basel (1997). Zbl 0898.46030, MR 1484417, 10.1007/978-3-0348-0034-1
Reference: [21] Triebel, H.: Theory of Function Spaces III.Monographs in Mathematics 100, Birkhäuser, Basel (2006). Zbl 1104.46001, MR 2250142, 10.1007/3-7643-7582-5
Reference: [22] Triebel, H.: Local Function Spaces, Heat and Navier-Stokes Equations.EMS Tracts in Mathematics 20, European Mathematical Society, Zürich (2013). Zbl 1280.46002, MR 3086433, 10.4171/123
Reference: [23] Triebel, H.: Hybrid Function Spaces, Heat and Navier-Stokes Equations.EMS Tracts in Mathematics 24, European Mathematical Society, Zürich (2015). Zbl 1330.46003, MR 3308920, 10.4171/150
Reference: [24] Triebel, H.: Tempered Homogeneous Function Spaces.EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich (2015). Zbl 1336.46004, MR 3409094, 10.4171/155
Reference: [25] Ullrich, T.: Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits.J. Funct. Spaces Appl. 2012 (2012), Article ID 163213, 47 pages. Zbl 1246.46036, MR 2898467, 10.1155/2012/163213
Reference: [26] Xiao, J.: Holomorphic $Q$ Classes.Lecture Notes in Mathematics 1767, Springer, Berlin (2001). Zbl 0983.30001, MR 1869752, 10.1007/b87877
Reference: [27] Xiao, J.: Geometric $Q_p$ Functions.Frontiers in Mathematics, Birkhäuser, Basel (2006). Zbl 1104.30036, MR 2257688, 10.1007/978-3-7643-7763-2
Reference: [28] Xu, J.: Variable Besov and Triebel-Lizorkin spaces.Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. Zbl 1160.46025, MR 2431378
Reference: [29] Yang, D., Yuan, W.: A new class of function spaces connecting Triebel-Lizorkin spaces and $Q$ spaces.J. Funct. Anal. 255 (2008), 2760-2809. Zbl 1169.46016, MR 2464191, 10.1016/j.jfa.2008.09.005
Reference: [30] Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3805-3820. Zbl 1225.46033, MR 2728556, 10.1016/j.na.2010.08.006
Reference: [31] Yang, D., Yuan, W.: New Besov-type spaces and Triebel-Lizorkin-type spaces including $Q$ spaces.Math. Z. 265 (2010), 451-480. Zbl 1191.42011, MR 2609320, 10.1007/s00209-009-0524-9
Reference: [32] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel.Lecture Notes in Mathematics 2005, Springer, Berlin (2010). Zbl 1207.46002, MR 2683024, 10.1007/978-3-642-14606-0
.

Files

Files Size Format View
CzechMathJ_67-2017-2_15.pdf 302.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo