[2] Banica, T., Bichon, J., Collins, B.:
Quantum permutation groups: a survey. Noncommutative Harmonic Analysis with Applications to Probability Papers presented at the 9th Workshop, Będlewo, Poland, 2006, Banach Center Publications 78, Polish Academy of Sciences, Institute of Mathematics, Warsaw M. Bożejko et al. (2008), 13-34.
MR 2402345 |
Zbl 1140.46329
[3] Baues, H. J.:
Algebraic Homotopy. Cambridge Studies in Advanced Mathematics 15, Cambridge University Press, Cambridge (1989).
MR 0985099 |
Zbl 0688.55001
[9] Majid, S.:
Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge (1995).
MR 1381692 |
Zbl 0857.17009
[11] Milne, J. S.: Basic Theory of Affine Group Schemes. Available online: www.jmilne.org /math/CourseNotes/AGS.pdf (2012).
[12] Podleś, P.: Quantum spaces and their symmetry groups. PhD Thesis, Department of Mathematical Methods in Physics Faculty of Physics, Warsaw University (1989).
[17] Sołtan, P. M.:
On quantum maps into quantum semigroups. Houston J. Math. 40 (2014), 779-790.
MR 3275623 |
Zbl 1318.46051
[18] Sweedler, M. E.:
Hopf Algebras. Mathematics Lecture Note Series, W. A. Benjamin, New York (1969).
MR 0252485 |
Zbl 0194.32901
[21] Woronowicz, S. L.:
Pseudospaces, pseudogroups and Pontrjagin duality. Mathematical Problems in Theoretical Physics Proc. Int. Conf. on Mathematical Physics, Lausanne, 1979, Lect. Notes Phys. Vol. 116, Springer, Berlin 407-412 (1980).
DOI 10.1007/3-540-09964-6_354 |
MR 0582650 |
Zbl 03810280