Article
Keywords:
fixed point; logarithmic convex structure; convex metric space
Summary:
In this paper, we introduce the concept of a logarithmic convex structure. Let $X$ be a set and $D\colon X\times X\rightarrow [1,\infty )$ a function satisfying the following conditions: \item {(i)} For all $x,y\in X$, $ D(x,y)\geq 1$ and $D(x,y)=1$ if and only if $x=y$. \item {(ii)} For all $x,y\in X$, $D(x,y)=D(y,x)$. \item {(iii)} For all $ x,y,z\in X$, $D(x,y)\leq D(x,z)D(z,y)$. \item {(iv)} For all $x,y,z\in X$, $z\neq x,y$ and $\lambda \in (0,1)$, \begin {gather} D(z,W(x,y,\lambda ))\leq D^\lambda (x,z)D^{1-\lambda }(y,z),\nonumber \\ D(x,y)= D(x,W(x,y,\lambda ))D(y,W(x,y,\lambda )),\nonumber \end {gather} where $W\colon X\times X\times [0,1]\rightarrow X$ is a continuous mapping. We name this the logarithmic convex structure. In this work we prove some fixed point theorems in the logarithmic convex structure.
References:
[1] Chang, S. S., Cho, Y. J., Kang, S. M.:
Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Science Publishers Huntington (2001).
MR 2018691 |
Zbl 1080.47054
[2] 'Cirić, L. B.:
On some discontinuous fixed point mappings in convex metric spaces. Czech. Math. J. 43 (1993), 319-326.
MR 1211753 |
Zbl 0814.47065
[3] Guay, M. D., Singh, K. L., Whitfieled, J. H. M.:
Fixed point theorems for nonexpansive mappings in convex metric spaces. Nonlinear Analysis and Applications. Proc. Int. Conf. at Memorial University of Newfoundland, 1981 S. P. Singh at al. Lect. Notes Pure Appl. Math. 80, Marcel Dekker, New York (1982), 179-189.
MR 0689554 |
Zbl 0501.54030
[5] Shimizu, T., Takahashi, W.:
Fixed point theorems in certain convex metric spaces. Math. Jap. 37 (1992), 855-859.
MR 1186552 |
Zbl 0764.47030