Previous |  Up |  Next

Article

Keywords:
feebly continuous mapping; quasi-interior continuity; Baire space; weakly Baire space; fiber-completeness
Summary:
We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous surjections. We also give a new definition for countably fiber-completeness of a function. We prove that Baire category is preserved under inverse image of a countably fiber-complete function provided that it is feebly open and feebly continuous.
References:
[1] Beer, G., Villar, L.: Weakly Baire spaces. Southeast Asian Bull. Math. 11 (1988), 127-133. MR 0958315 | Zbl 0665.54019
[2] Bourbaki, N.: Topologie Générale -- Chapitre 9: Utilisation des Nombres Réels en Topologie Générale. Éléments de Mathématique I: Les Structures Fondamentales de L'analyse -- Livre III Actualités Scientifiques et Industrielles, No. 1045 Hermann & Cie, Paris French (1948). MR 0027138
[3] Cao, J., Moors, W. B.: A survey on topological games and their applications in analysis. RACSAM, Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. 100 (2006), 39-49. MR 2267399 | Zbl 1114.91024
[4] Choquet, G.: Lectures on Analysis, vol. 1: Integration and Topological Vector Spaces. Mathematics Lecture Note Series W. A. Benjamin, New York-Amsterdam (1969). MR 0250011 | Zbl 0181.39601
[5] Dobo{š}, J.: A note on the invariance of Baire spaces under mappings. Časopis Pěst. Mat. 108 (1983), 409-411. MR 0727538 | Zbl 0535.54005
[6] Doboš, J., Piotrowski, Z., Reilly, I. L.: Preimages of Baire spaces. Math. Bohem. 119 (1994), 373-379. MR 1316589 | Zbl 0815.54010
[7] Fleissner, W. G., Kunen, K.: Barely Baire spaces. Fundam. Math. 101 (1978), 229-240. DOI 10.4064/fm-101-3-229-240 | MR 0521125 | Zbl 0413.54036
[8] Frol{í}k, Z.: Baire spaces and some generalizations of complete metric spaces. Czech. Math. J. 11 (1961), 237-248. MR 0124870 | Zbl 0149.40302
[9] Frol{í}k, Z.: Remarks concerning the invariance of Baire spaces under mappings. Czech. Math. J. 11 (1961), 381-385. MR 0133098 | Zbl 0104.17204
[10] Mirmostafaee, A. K.: Continuity of separately continuous mappings. Math. Slovaca 64 (2014), 1019-1026. DOI 10.2478/s12175-014-0255-1 | MR 3255869 | Zbl 1349.54034
[11] Moors, W. B.: The product of a Baire space with a hereditarily Baire metric space is Baire. Proc. Am. Math. Soc. 134 (2006), 2161-2163. DOI 10.1090/S0002-9939-06-08389-4 | MR 2215788 | Zbl 1093.54008
[12] Neubrunn, T.: A note on mappings of Baire spaces. Math. Slovaca 27 (1977), 173-176 correction in 442 (1977). MR 0454910 | Zbl 0371.54023
[13] Noll, D.: On the preservation of Baire category under preimages. Proc. Am. Math. Soc. 107 (1989), 847-854. DOI 10.1090/S0002-9939-1989-0982407-2 | MR 0982407 | Zbl 0687.54012
[14] Oxtoby, J. C.: Cartesian products of Baire spaces. Fundam. Math. 49 (1961), 157-166. DOI 10.4064/fm-49-2-157-166 | MR 0140638 | Zbl 0113.16402
[15] Oxtoby, J. C.: Measure and Category---A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics. Vol. 2 Springer, New York (1971). MR 0393403 | Zbl 0217.09201
[16] Piotrowski, Z., Reilly, I. L.: Preimages of Baire spaces---an example. Quest. Answers Gen. Topology 11 (1993), 105-107. MR 1205956 | Zbl 0779.54025
[17] Rose, D. A., Jankovi{ć}, D. S., Hamlett, T. R.: On weakly Baire spaces. Southeast Asian Bull. Math. 15 (1991), 183-190. MR 1145440 | Zbl 0747.54008
[18] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics McGraw-Hill, New York (1991). MR 1157815 | Zbl 0867.46001
[19] Sikorski, R.: On the Cartesian product of metric spaces. Fundam. Math. 34 (1947), 288-292. DOI 10.4064/fm-34-1-288-292 | MR 0025542 | Zbl 0041.31701
Partner of
EuDML logo