Previous |  Up |  Next

Article

Keywords:
medial quasigroup; quasigroup affine over abelian group; classification of quasigroups; enumeration of quasigroups
Summary:
We prove that, for any prime $p$, there are precisely $2p^4-p^3-p^2-3p-1$ medial quasigroups of order $p^2$, up to isomorphism.
References:
[1] Drápal A.: Group isotopes and a holomorphic action. Result. Math. 54 (2009), no. 3–4, 253–272. DOI 10.1007/s00025-009-0370-4 | MR 2534446 | Zbl 1190.20049
[2] Hou X.: Finite modules over $\mathbb Z[t,t^{-1}]$. J. Knot Theory Ramifications 21 (2012), no. 8, 1250079, 28 pp. MR 2925432
[3] Hulpke A., Stanovský D., Vojtěchovský P.: Connected quandles and transitive groups. J. Pure Appl. Algebra 220 (2016), no. 2, 735–758. DOI 10.1016/j.jpaa.2015.07.014 | MR 3399387 | Zbl 1326.57025
[4] Kirnasovsky O.U.: Linear isotopes of small order groups. Quasigroups Related Systems 2 (1995), no. 1, 51–82. MR 1485747 | Zbl 0951.20508
[5] Macdonald I.G.: Numbers of conjugacy classes in some finite classical groups. Bull. Austral. Math. Soc. 23 (1981), no. 1, 23–48. DOI 10.1017/S0004972700006882 | MR 0615131 | Zbl 0445.20029
[6] Sim H.-S., Song H.-J.: Revisit to connected Alexander quandles of small orders via fixed point free automorphisms of finite Abelian groups. East Asian Math. J. 30 (2014), no. 3, 293–302. DOI 10.7858/eamj.2014.019 | Zbl 1339.20065
[7] Sokhatsky F., Syvakivskij P.: On linear isotopes of cyclic groups. Quasigroups Related Systems 1 (1994), no. 1, 66–76. MR 1327947 | Zbl 0951.20510
[8] Stanovský D.: A guide to self-distributive quasigroups, or latin quandles. Quasigroups Related Systems 23 (2015), no. 1, 91–128. MR 3353113 | Zbl 1328.20085
[9] Stanovský D., Vojtěchovský P.: Central and medial quasigroups of small order. Bul. Acad. Ştiinte Repub. Moldova Mat. 80 (2016), no. 1, 24–40. MR 3528005 | Zbl 1349.20075
Partner of
EuDML logo