Article
Keywords:
medial quasigroup; quasigroup affine over abelian group; classification of quasigroups; enumeration of quasigroups
Summary:
We prove that, for any prime $p$, there are precisely $2p^4-p^3-p^2-3p-1$ medial quasigroups of order $p^2$, up to isomorphism.
References:
[2] Hou X.:
Finite modules over $\mathbb Z[t,t^{-1}]$. J. Knot Theory Ramifications 21 (2012), no. 8, 1250079, 28 pp.
MR 2925432
[4] Kirnasovsky O.U.:
Linear isotopes of small order groups. Quasigroups Related Systems 2 (1995), no. 1, 51–82.
MR 1485747 |
Zbl 0951.20508
[6] Sim H.-S., Song H.-J.:
Revisit to connected Alexander quandles of small orders via fixed point free automorphisms of finite Abelian groups. East Asian Math. J. 30 (2014), no. 3, 293–302.
DOI 10.7858/eamj.2014.019 |
Zbl 1339.20065
[7] Sokhatsky F., Syvakivskij P.:
On linear isotopes of cyclic groups. Quasigroups Related Systems 1 (1994), no. 1, 66–76.
MR 1327947 |
Zbl 0951.20510
[8] Stanovský D.:
A guide to self-distributive quasigroups, or latin quandles. Quasigroups Related Systems 23 (2015), no. 1, 91–128.
MR 3353113 |
Zbl 1328.20085
[9] Stanovský D., Vojtěchovský P.:
Central and medial quasigroups of small order. Bul. Acad. Ştiinte Repub. Moldova Mat. 80 (2016), no. 1, 24–40.
MR 3528005 |
Zbl 1349.20075