Previous |  Up |  Next

Article

Keywords:
Hopf algebra; quantum group; quasigroup; loop; quantum Yang-Baxter equation; distributive
Summary:
Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation.
References:
[1] Benkart G., Madariaga S., Pérez-Izquierdo J.M.: Hopf algebras with triality. Trans. Amer. Math. Soc. 365 (2012), 1001–1023. DOI 10.1090/S0002-9947-2012-05656-X | MR 2995381 | Zbl 1278.16032
[2] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245–354. DOI 10.1090/S0002-9947-1946-0017288-3 | MR 0017288 | Zbl 0061.02201
[3] Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge, 1994. MR 1300632 | Zbl 0839.17010
[4] Davey B.A., Davis G.: Tensor products and entropic varieties. Algebra Universalis 21 (1985), 68–88. DOI 10.1007/BF01187558 | MR 0835972 | Zbl 0604.08004
[5] Drinfeld V.G.: On some unsolved problems in quantum group theory. in Quantum Groups (P.P. Kulish, ed.), Lecture Notes in Mathematics, 1510, Springer, Berlin, 1992, pp. 1–8. MR 1183473 | Zbl 0765.17014
[6] Green J.A., Nichols W.D., Taft E.J.: Left Hopf algebras. J. Algebra 65 (1980), 399–411. DOI 10.1016/0021-8693(80)90227-6 | MR 0585730 | Zbl 0439.16008
[7] Hofmann K.H., Strambach K.: Idempotent multiplications on surfaces and aspherical spaces. Rocky Mountain J. Math. 21 (1991), 1279–1315. DOI 10.1216/rmjm/1181072908 | MR 1147861 | Zbl 0801.57026
[8] Klim J., Majid S.: Hopf quasigroups and the algebraic $7$-sphere. J. Algebra 323 (2010), 3067–3110. DOI 10.1016/j.jalgebra.2010.03.011 | MR 2629701
[9] Klim J., Majid S.: Bicrossproduct Hopf quasigroups. Comment. Math. Univ. Carolin. 51 (2010), 287–304. MR 2682482 | Zbl 1224.81014
[10] Manin Yu.I.: Cubic Forms: Algebra, Geometry, Arithmetic. Nauka, Moscow, 1972 (in Russian). MR 0833513 | Zbl 0582.14010
[11] Nichols W.D., Taft E.J.: The left antipodes of a left Hopf algebra. in Algebraists' Homage (S.A. Amitsur, D.J. Saltman and G.B. Seligman, eds.), Contemporary Mathematics, 13, American Mathematical Society, Providence, RI, 1982, pp. 363–368. DOI 10.1090/conm/013/685972 | MR 0685972 | Zbl 0501.16013
[12] Pérez-Izquierdo J.M.: Algebras, hyperalgebras, nonassociative bialgebras and loops. Adv. Math. 208 (2007), 834–876. DOI 10.1016/j.aim.2006.04.001 | MR 2304338
[13] Radford D.E.: Hopf Algebras. World Scientific, Singapore, 2012. MR 2894855 | Zbl 1266.16036
[14] Rodríguez-Romo S., Taft E.J.: A left quantum group. J. Algebra 286 (2005), 154–160. DOI 10.1016/j.jalgebra.2005.01.002 | MR 2124812 | Zbl 1073.16033
[15] Smith J.D.H.: An Introduction to Quasigroups and Their Representations. Chapman and Hall/CRC, Boca Raton, FL, 2007. MR 2268350 | Zbl 1122.20035
[16] Smith J.D.H.: One-sided quantum quasigroups and loops. Demonstr. Math. 48 (2015), 620–636; DOI: 10.1515/dema-2015-0043. DOI 10.1515/dema-2015-0043 | MR 3430892
[17] Smith J.D.H.: Quantum quasigroups and loops. J. Algebra 456 (2016), 46–75; DOI: 10.1016/j.jalgebra.2016.02.014. DOI 10.1016/j.jalgebra.2016.02.014 | MR 3484135 | Zbl 1350.20051
[18] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra. Wiley, New York, NY, 1999. MR 1673047 | Zbl 0946.00001
[19] Street R.: Quantum Groups. Cambridge University Press, Cambridge, 2007. MR 2294803 | Zbl 1117.16031
Partner of
EuDML logo