Previous |  Up |  Next

Article

Keywords:
consistent estimate of asymptotic covariance matrix; U-statistics; vector of Kendall's coefficients; coefficient of agreement; confidence interval
Summary:
Consistent estimators of the asymptotic covariance matrix of vectors of $U$-statistics are used in constructing asymptotic confidence regions for vectors of Kendall's correlation coefficients corresponding to various pairs of components of a random vector. The regions are products of intervals computed by means of a critical value from multivariate normal distribution. The regularity of the asymptotic covariance matrix of the vector of Kendall's sample coefficients is proved in the case of sampling from continuous multivariate distribution under mild conditions. The results are applied also to confidence intervals for the coefficient of agreement. The coverage and length of the obtained (multivariate) product of intervals are illustrated by simulation.
References:
[1] Abdous, B., Genest, C., Rémillard, B.: Dependence properties of meta-elliptical distributions. In: Statistical Modelling and Analysis for Complex Data Problems (P. Duchesne and B. Rémillard,eds.), Springer, New York, 2005, pp. 1-15. DOI 10.1007/0-387-24555-3_1 | MR 2189528
[2] Ehrenberg, A. S. C.: On sampling from a population of rankers. Biometrika 39 (1952), 82-87. DOI 10.1093/biomet/39.1-2.82 | MR 0048755 | Zbl 0046.35901
[3] Genest, C., Nešlehová, J., Ghorbal, N. Ben: Estimators based on Kendall's tau in multivariate copula models. Austral. and New Zealand J. Statist. 53 (2011), 157-177. DOI 10.1111/j.1467-842x.2011.00622.x | MR 2851720
[4] Goodman, L. A.: A simple simultaneous test procedure for quasi-independence in contingency tables. J. Royal Statist. Soc., Ser. C 20 2(1971), 165-177. DOI 10.2307/2346464
[5] Hájek, J., Šidák, Z., Sen, P. K.: Theory of Rank Tests. Academic Press, San Diego 1999. MR 1680991 | Zbl 0944.62045
[6] Hoeffding, W.: A class of statistics with asymptotically normal distribution. The Annals Math. Statist. 19 (1948), 293-325. DOI 10.1214/aoms/1177730196 | MR 0026294 | Zbl 0032.04101
[7] Hult, H., Lindskog, F.: Multivariate extremes, aggregation and dependence in elliptical distributions. Adv. Appl. Probab. 34 (2002), 587-608. DOI 10.1239/aap/1033662167 | MR 1929599 | Zbl 1023.60021
[8] Kendall, M. G., Smith, B. Babington: On the method of paired comparisons. Biometrika 31 (1940), 324-345. DOI 10.1093/biomet/31.3-4.324 | MR 0002761
[9] Kingman, J. F. C., Taylor, S. J.: Introduction to Measure and Probability. Cambridge University Press, Cambridge 1966. DOI 10.1017/cbo9780511897214 | MR 0218515 | Zbl 1152.60002
[10] Lee, A. J.: U-Statistics: Theory and Practice. Marcel Dekker, Inc., New York 1990. MR 1075417 | Zbl 0771.62001
[11] Liu, A., Li, Q., Liu, C., Yu, K., Yu, K. F.: A rank-based test for comparison of multidimensional outcomes. JASA 105 (2010), 578-587. DOI 10.1198/jasa.2010.ap09114 | MR 2724843
[12] Maache, H. El, Lepage, Y.: Spearman's rho and Kendalls's tau for multivariate data sets. In: Lecture Notes - Monograph Series 42, Mathematical Statistics and Applications, Festschrift for Constance van Eeden, Beachwood 2003, pp. 113-130. MR 2138289
[13] Rao, C. R.: Linear Statistical Inference and its Applications. John Wiley and Sons, New York 1973. DOI 10.1002/9780470316436 | MR 0346957 | Zbl 0256.62002
[14] Sen, P. K.: On some convergence of U-statistics. Cal. Statist. Assoc. Bull. 10 (1960), 1-18. DOI 10.1177/0008068319600101 | MR 0119286
Partner of
EuDML logo