[1] Aiyoshi, E., Shimizu, K.:
Hierarchical decentralized systems and its new solution by abarrier method. IEEE Trans. Systems, Man, and Cybernet. 11 (1981), 444-449.
DOI 10.1109/tsmc.1981.4308712 |
MR 0631815
[2] Antipin, A. S.:
An extraproximal method for solving equilibrium programming problems and games. Comput. Math. and Math. Phys. 45 (2005), 11, 1893-1914.
MR 2203222
[6] Bianco, L., Caramia, M., Giordani, S.:
A bilevel flow model for hazmat transportation network design. Transport. Res. Part C: Emerging Technol. 17 (2009), 2, 175-196.
DOI 10.1016/j.trc.2008.10.001
[7] Brotcorne, L., Labb, M., Marcotte, P., Savard, G.:
A bilevel model for toll optimization on a multicommodity transportation network. Transport. Sci. 35 (2001), 345-358.
DOI 10.1287/trsc.35.4.345.10433
[8] Clempner, J. B., Poznyak, A. S.:
Simple computing of the customer lifetime value: A fixed local-optimal policy approach. J. Systems Sci. and Systems Engrg. 23 (2014), 4, 439-459.
DOI 10.1007/s11518-014-5260-y
[9] Clempner, J. B., Poznyak, A. S.:
Stackelberg security games: Computing the shortest-path equilibrium. Expert Systems Appl. 42 (2015), 8, 3967-3979.
DOI 10.1016/j.eswa.2014.12.034
[10] Cote, J., Marcotte, P., Savard, G.:
A bilevel modelling approach to pricing and fare optimisation in the airline industry. J. Revenue and Pricing Management 2 (2003), 1, 23-36.
DOI 10.1057/palgrave.rpm.5170046
[11] Deb, K., Sinha, A.:
An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evolutionary Comput. J. 18 (2010), 3, 403-449.
DOI 10.1162/evco_a_00015
[12] Dempe, S.: Discrete Bilevel Optimization Problems. Technical ReportInstitut fur Wirtschaftsinformatik, Universitat Leipzig 2001.
[14] DeNegre, S., Ralphs, T.:
A branch-and-cut algorithm for integer bilevel linear programs. Oper. Res. Cyber-Infrastruct. 47 (2009), 65-78.
DOI 10.1007/978-0-387-88843-9_4
[17] Germeyer, Y. B.:
Introduction to the Theory of Operations Research. Nauka, Moscow 1971.
MR 0327275
[18] Germeyer, Y. B.: Games with Nonantagonistic Interests. Nauka, Moscow 1976.
[19] Herskovits, J., Leontiev, A., Dias, G., Santos, G.:
Contact shape optimization: a bilevel programming approach. Struct. Multidiscipl. Optim. 20 (2000), 214-221.
DOI 10.1007/s001580050149
[20] Koppe, M., Queyranne, M., Ryan, C. T.:
A parametric integer programming algorithm for bilevel mixed integer programs. J. Optim. Theory Appl. 146 (2009), 1, 137-150.
DOI 10.1007/s10957-010-9668-3 |
MR 2657828
[22] Lim, C., Smith, J.:
Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Trans. 39 (2007), 1, 15-26.
DOI 10.1287/mnsc.44.12.1608
[25] Poznyak, A. S.:
Advance Mathematical Tools for Automatic Control Engineers. Vol 2 Deterministic Techniques. Elsevier, Amsterdam 2009.
MR 2582931
[26] Poznyak, A. S., Najim, K., Gomez-Ramirez, E.:
Self-Learning Control of Finite Markov Chains. Marcel Dekker, New York 2000.
MR 1760540 |
Zbl 0960.93001
[27] Salmeron, J., Wood, K., Baldick, R.:
Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19 (2004), 2, 905-912.
DOI 10.1109/tpwrs.2004.825888
[30] Trejo, K. K., Clempner, J. B., Poznyak, A. S.:
Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games. Int. J. Appl. Math. Computer Sci. 25 (2015), 2, 337-351.
DOI 10.1515/amcs-2015-0026 |
MR 3363520
[31] Trejo, K. K., Clempner, J. B., Poznyak, A. S.:
A stackelberg security game with random strategies based on the extraproximal theoretic approach. Engrg. Appl. Artif. Intell. 37 (2015), 145-153.
DOI 10.1016/j.engappai.2014.09.002