[1] Bicchi, A., Sorrentino, R., Piaggio, C.:
Dexterous manipulation through rolling. In: ICRA'95, IEEE Int. Conf. on Robotics and Automation 1995, pp. 452-457.
DOI 10.1109/robot.1995.525325
[5] Caseiro, R., Martins, P., Henriques, J. F., Leite, F. Silva, Batista, J.:
Rolling Riemannian manifolds to solve the multi-class classification problem. In: CVPR 2013, pp. 41-48.
DOI 10.1109/cvpr.2013.13
[6] Chavel, I.:
Riemannian Geometry - A Modern Introduction. Second edition. Cambridge Studies in Advanced Mathematics, No. 98. Cambridge University Press, Cambridge 2006.
DOI 10.1017/cbo9780511616822 |
MR 2229062
[7] Crouch, P., Leite, F. Silva:
Rolling maps for pseudo-Riemannian manifolds. In: Proc. 51th IEEE Conference on Decision and Control, (Hawaii 2012).
DOI 10.1109/cdc.2012.6426140
[9] Hüper, K., Krakowski., K. A., Leite, F. Silva:
Rolling Maps in a Riemannian Framework. Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30.
MR 2894254
[10] Hüper, K., Leite, F. Silva:
On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds. J. Dynam. Control Systems 13 (2007), 4, 467-502.
DOI 10.1007/s10883-007-9027-3 |
MR 2350231
[11] Prete, N. M. Justin Carpentier J.-P. L. Andrea Del: An analytical model of rolling contact and its application to the modeling of bipedal locomotion. In: Proc. IMA Conference on Mathematics of Robotics 2015, pp. 452-457.
[15] Korolko, A., Leite, F. Silva:
Kinematics for rolling a Lorentzian sphere. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (IEEE CDC-ECC 2011), Orlando 2011, pp. 6522-6528.
DOI 10.1109/cdc.2011.6160592
[16] Krakowski, K., Leite, F. Silva:
An algorithm based on rolling to generate smooth interpolating curves on ellipsoids. Kybernetika 50 (2014), 4, 544-562.
DOI 10.14736/kyb-2014-4-0544 |
MR 3275084
[17] Krakowski, K. A., Leite, F. Silva: Why controllability of rolling may fail: a few illustrative examples. In: Pré-Publicações do Departamento de Matemática, no. 12-26. University of Coimbra 2012, pp. 1-30.
[18] Lee, J. M., J:
Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag, Graduate Texts in Mathematics 176, New York 1997.
MR 1468735
[20] Moser, J.:
Geometry of quadrics and spectral theory. In: The Chern Symposium 1979 (W.-Y. Hsiang, S. Kobayashi, I. Singer, J. Wolf, H.-H. Wu, and A. Weinstein, eds.), Springer, New York 1980, pp. 147-188.
DOI 10.1007/978-1-4613-8109-9_7 |
MR 0609560 |
Zbl 0455.58018
[22] Okamura, A. M., Smaby, N., Cutkosky, M. R.:
An overview of dexterous manipulation. In: ICRA'00, IEEE Int Conf. on Robotics and Automation 2000, pp. 255–262. DOI:10.1109/robot.2000.844067
DOI 10.1109/robot.2000.844067
[24] Sharpe, R. W.:
Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer-Verlag, Graduate Texts in Mathematics 166, New York 1997.
MR 1453120 |
Zbl 0876.53001
[25] Leite, F. Silva, Krakowski, K. A.: Covariant differentiation under rolling maps. In: Pré-Publicações do Departamento de Matemática, No. 08-22, University of Coimbra 2008, pp. 1-8.
[26] Spivak, M.:
Calculus on Manifolds. Mathematics Monograph Series, Addison-Wesley, New York 1965.
Zbl 0381.58003
[27] Uhlenbeck, K.: Minimal 2-spheres and tori in $S^k$. Preprint, 1975.
[29] Weintrit, A., Neumann, T., eds.:
Methods and Algorithms in Navigation: Marine Navigation and Safety of Sea Transportation. CRC Press, 2011.
DOI 10.1201/b11344