Previous |  Up |  Next

Article

Title: On a question of $C_c(X)$ (English)
Author: Olfati, A. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 253-260
Summary lang: English
.
Category: math
.
Summary: In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova 129 (2013), 47--69. It is shown that $C_c(X)$ is isomorphic to some ring of continuous functions if and only if $\upsilon_0 X$ is functionally countable. For a strongly zero-dimensional space $X$, this is equivalent to say that $X$ is functionally countable. Hence for every $P$-space it is equivalent to pseudo-$\aleph_0$-compactness. (English)
Keyword: zero-dimensional space
Keyword: strongly zero-dimensional space
Keyword: $\mathbb{N}$-compact space
Keyword: Banaschewski compactification
Keyword: character
Keyword: ring homomorphism
Keyword: functionally countable subring
Keyword: functional separability
MSC: 46E25
MSC: 54C30
MSC: 54C40
MSC: 54D35
MSC: 54D60
idZBL: Zbl 06604505
idMR: MR3513448
DOI: 10.14712/1213-7243.2015.161
.
Date available: 2016-07-05T15:12:45Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145752
.
Reference: [1] Barr M., Kennison F., Raphael R.: Searching for absolute $\mathcal{CR}$-epic spaces.Canad. J. Math. 59 (2007), 465–487. MR 2319155, 10.4153/CJM-2007-020-9
Reference: [2] Barr M., Burgess W.D., Raphael R.: Ring epimorphisms and $C(X)$.Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl 1042.54007, MR 1988400
Reference: [3] Burgess W.D., Raphael R.: Compactifications, $C(X)$ and ring epimorphisms.Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl 1115.18001, MR 2259263
Reference: [4] Bhattacharjee P., Knox M.L., McGovern W.W.: The classical ring of quotients of $C_c(X)$.Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl 1305.54030, MR 3267269, 10.4995/agt.2014.3181
Reference: [5] Boulabiar K.: Characters on $C(X)$.Canad. Math. Bull. 58 (2015), 7–8. Zbl 1312.54006, MR 3303202, 10.4153/CMB-2014-024-3
Reference: [6] Engelking R.: General Topology.PWN-Polish Sci. Publ., Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [7] Engelking R., Mrówka S.: On $E$-compact spaces.Bull. Acad. Polon. Sci. 6 (1958), 429-436. Zbl 0083.17402, MR 0097042
Reference: [8] Ercan Z., Onal S.: A remark on the homomorphism on $C(X)$.Proc. Amer. Math. Soc. 133 (2005), 3609–3611. Zbl 1087.46038, MR 2163596, 10.1090/S0002-9939-05-07930-X
Reference: [9] Ghadermazi M., Karamzadeh O.A.S., Namdari M.: On the functionally countable subalgebra of $C(X)$.Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl 1279.54015, MR 3090630, 10.4171/RSMUP/129-4
Reference: [10] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, 43, Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579
Reference: [11] Hager A., Kimber C., McGovern W.W.: Unique $a$-closure for some $\ell$-groups of rational valued functions.Czechoslovak Math. J. 55 (2005), 409–421. Zbl 1081.06020, MR 2137147, 10.1007/s10587-005-0031-z
Reference: [12] Hušek M., Pulgarín A.: $C(X)$ as a real $\ell$-group.Topology Appl. 157 (2010), 1454–1459. Zbl 1195.46024, MR 2610454
Reference: [13] Levy R., Rice M.D.: Normal $P$-spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227–240. Zbl 0496.54034, MR 0652582, 10.4064/cm-44-2-227-240
Reference: [14] Levy R., Matveev M.: Functional separability.Comment. Math. Univ. Carolin. 51 (2010), no. 4, 705–711. Zbl 1224.54063, MR 2858271
Reference: [15] Mrówka S.: Structures of continuous functions III. Rings and lattices of integer-valued continuous functions.Vehr. Nederl. Akad. Wetensch. Sect. I 68 (1965), 74–82. Zbl 0139.07404, MR 0237580, 10.1016/S1385-7258(65)50008-1
Reference: [16] Mrówka S., Shore S.D.: Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain.Vehr. Nederl. Akad. Wetensch. Sect. I 68 (1965), 92–94. MR 0237582
Reference: [17] Mrówka S.: On $E$-compact spaces II.Bull. Acad. Polon. Sci. 14 (1966), 597–605. Zbl 0161.19603
Reference: [18] Mrówka S.: Further results on $E$-compact spaces I.Acta. Math. 120 (1968), 161–185. Zbl 0179.51202, MR 0226576, 10.1007/BF02394609
Reference: [19] Mrówka S.: Structures of continuous functions I.Acta. Math. Acad. Sci. Hungar. 21 (1970), 239–259. Zbl 0229.46027, MR 0269706, 10.1007/BF01894771
Reference: [20] Nyikos P.: Not every 0-dimensional realcompact space is $\mathbb{N}$-compact.Bull. Amer. Math. Soc 77 (1971), 392–396. MR 0282336, 10.1090/S0002-9904-1971-12709-X
Reference: [21] Pelczyński A., Semadeni Z.: Spaces of continuous functions III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211-222. MR 0107806, 10.4064/sm-18-2-211-222
Reference: [22] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341
Reference: [23] Rudin W.: Continuous functions on compact spaces without perfect subsets.Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl 0077.31103, MR 0085475, 10.1090/S0002-9939-1957-0085475-7
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_9.pdf 267.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo