Article
Keywords:
Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method
Summary:
For any positive integer $k\geq 3$, it is easy to prove that the \mbox {$k$-polygonal} numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet \mbox {$L$-functions} and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline {a}_m(k), p)$ for \mbox {$k$-polygonal} numbers with $1\leq m,n\leq p-1$, and give an interesting computational formula for it.
References:
[1] Apostol, T. M.:
Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics Springer, New York (1976).
MR 0434929 |
Zbl 0335.10001
[7] Rademacher, H.:
On the transformation of {$\log \eta(\tau)$}. J. Indian Math. Soc., New Ser. 19 (1955), 25-30.
MR 0070660 |
Zbl 0064.32703
[8] Rademacher, H., Grosswald, E.:
Dedekind Sums. The Carus Mathematical Monographs 16 The Mathematical Association of America, Washington (1972).
MR 0357299 |
Zbl 0251.10020