[2] Birkhoff, G.:
Lattice Theory. Third edition. Providence 1967.
MR 0227053
[4] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square. In: Proc. 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
[6] Gottwald, S.:
A Treatise on Many-valued Logic. Studies in Logic and Computation, Research Studies Press, Baldock 2001.
MR 1856623
[8] Karaçal, F., Kesicioğlu, M. N.:
A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
MR 2828579 |
Zbl 1245.03086
[9] Karaçal, F., Sağıroğlu, Y.:
Infinetely $\bigvee$- distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43.
MR 2469428
[10] Karaçal, F., Khadjiev, Dj.:
$\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151 (2005), 341-352.
DOI 10.1016/j.fss.2008.03.022 |
MR 2124884
[12] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.:
Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.
MR 3320247
[21] Schweizer, B., Sklar, A.:
Espaces métriques aléatoires. C. R. Acad. Sci. Paris Sér. A 247 (1958), 2092-2094.
MR 0099068 |
Zbl 0085.12503
[23] Schweizer, B., Sklar, A.:
Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69-81.
MR 0170967