Previous |  Up |  Next

Article

Keywords:
triangular norm; $T$-partial order; bounded lattice
Summary:
In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.
References:
[1] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333. DOI 10.1016/j.ins.2014.01.032 | MR 3177320
[2] Birkhoff, G.: Lattice Theory. Third edition. Providence 1967. MR 0227053
[3] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. DOI 10.1016/s0165-0114(98)00259-0 | MR 1685810 | Zbl 0935.03060
[4] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square. In: Proc. 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
[5] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177. DOI 10.1016/j.fss.2007.12.005 | MR 2416385 | Zbl 1176.03023
[6] Gottwald, S.: A Treatise on Many-valued Logic. Studies in Logic and Computation, Research Studies Press, Baldock 2001. MR 1856623
[7] Karaçal, F., Aşıcı, E.: Some notes on T-partial order. J. Inequal. Appl. 2013 (2013), 219. DOI 10.1186/1029-242x-2013-219 | MR 3065324
[8] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. MR 2828579 | Zbl 1245.03086
[9] Karaçal, F., Sağıroğlu, Y.: Infinetely $\bigvee$- distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43. MR 2469428
[10] Karaçal, F., Khadjiev, Dj.: $\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151 (2005), 341-352. DOI 10.1016/j.fss.2008.03.022 | MR 2124884
[11] Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176 (2006), 3011-3025. DOI 10.1016/j.ins.2005.12.010 | MR 2247614 | Zbl 1104.03016
[12] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71. MR 3320247
[13] Khadjiev, D., Karaçal, F.: Pairwise comaximal elements and the classification of all $\vee$-distributive triangular norms of length 3. Inf. Sci. 204 (2012), 36-43. DOI 10.1016/j.ins.2012.03.014 | MR 2925708 | Zbl 1270.03139
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[15] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502. DOI 10.1016/j.fss.2009.04.014 | MR 2563300 | Zbl 1185.68546
[16] Maes, K. C., Mesiarova-Zemankova, A.: Cancellativity properties for t-norms and t-subnorms. Inf. Sci. 179 (2009), 135-150. DOI 10.1016/j.ins.2008.11.035 | MR 2501780 | Zbl 1162.03013
[17] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Syst. 137 (2003), 27-42. DOI 10.1016/s0165-0114(02)00430-x | MR 1992696 | Zbl 1022.03038
[18] Mitsch, H.: A natural partial order for semigroups. Proc. Am. Math. Soc. 97 (1986), 384-388. DOI 10.1090/s0002-9939-1986-0840614-0 | MR 0840614 | Zbl 0596.06015
[19] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1413. DOI 10.1016/j.fss.2005.12.021 | MR 2226983 | Zbl 1099.06004
[20] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, Amsterdam 1983. MR 0790314 | Zbl 0546.60010
[21] Schweizer, B., Sklar, A.: Espaces métriques aléatoires. C. R. Acad. Sci. Paris Sér. A 247 (1958), 2092-2094. MR 0099068 | Zbl 0085.12503
[22] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0136.39301
[23] Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69-81. MR 0170967
Partner of
EuDML logo