Previous |  Up |  Next

Article

Keywords:
eigenvector; interval vector; max-min matrix
Summary:
A vector $x$ is said to be an eigenvector of a square max-min matrix $A$ if $A\otimes x=x$. An eigenvector $x$ of $A$ is called the greatest $\textit{\textbf{X}}$-eigenvector of $A$ if $x\in\textit{\textbf{X}}=\{x; {\underline x}\leq x\leq {\overline x}\}$ and $y\leq x$ for each eigenvector $y\in\textit{\textbf{X}}$. A max-min matrix $A$ is called strongly $\textit{\textbf{X}}$-robust if the orbit $x,A\otimes x, A^2\otimes x,\dots$ reaches the greatest $\textit{\textbf{X}}$-eigenvector with any starting vector of $\textit{\textbf{X}}$. We suggest an $O(n^3)$ algorithm for computing the greatest $\textit{\textbf{X}}$-eigenvector of $A$ and study the strong $\textit{\textbf{X}}$-robustness. The necessary and sufficient conditions for strong $\textit{\textbf{X}}$-robustness are introduced and an efficient algorithm for verifying these conditions is described.
References:
[1] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. DOI 10.1007/978-1-84996-299-5
[2] Cechlárová, K.: Eigenvectors in Bottleneck algebra. Linear Algebra Appl. 175 (1992), 63-73. DOI 10.1016/0024-3795(92)90302-q | MR 1179341 | Zbl 0756.15014
[3] Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer-Verlag, Berlin 2006. MR 2218777 | Zbl 1106.90051
[4] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Appl. Math. 45 (2008), 533-542. MR 2426231 | Zbl 1154.65036
[5] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[6] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3. MR 2655335
[7] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in max-min algebra. Kybernetika 46 (2010), 3, 387-396. MR 2676076 | Zbl 1202.15013
[8] Lacko, V., Berežný, Š.: The color-balanced spanning tree problem. Kybernetika 41 (2005), 539-546. MR 2180362 | Zbl 1249.05053
[9] Molnárová, M., Pribiš, J.: Matrix period in max-algebra. Discrete Applied Mathematics 103 (2000), 167-175. DOI 10.1016/s0166-218x(99)00242-5 | MR 1762209 | Zbl 0952.05043
[10] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra and Its Appl. 438 (2013), 8, 3350-3364. DOI 10.1016/j.laa.2012.12.020 | MR 3023281
[11] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI 10.2478/v10198-012-0032-4
[12] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI 10.2478/v10198-012-0033-3
[13] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[14] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Applied Math. 159 (2011), 5, 381-388. DOI 10.1016/j.dam.2010.11.020 | MR 2755915 | Zbl 1225.15027
[15] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices. Discrete Applied Math. 160 (2012), 640-647. DOI 10.1016/j.dam.2011.11.010 | MR 2876347
[16] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. MR 3097386 | Zbl 1267.15026
[17] Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Appl. 126 (1989), 39-78. DOI 10.1016/0024-3795(89)90004-9 | MR 1040771 | Zbl 1061.15003
[18] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. DOI 10.1016/0165-0114(78)90033-7 | MR 0494745 | Zbl 0366.04001
[19] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. DOI 10.1016/j.laa.2011.02.038 | MR 2810668 | Zbl 1226.15017
[20] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Lin. Algebra Appl. 283 (1998), 257-272. DOI 10.1016/s0024-3795(98)10105-2 | MR 1657171 | Zbl 0932.15005
[21] Zimmermann, K.: Extremální algebra (in Czech). Ekon. ústav ČSAV Praha, 1976. MR 0403587
Partner of
EuDML logo