[1] Agarwal, R.P., O’Regan, D., Saker, S.H.:
Dynamic inequalities on time scales. Springer, 2014.
MR 3307947 |
Zbl 1318.26002
[2] Andras, S., Meszaros, A.:
Wendroff type inequalities on time scales via Picard operators. Math. Inequal. Appl. 17 (1) (2013), 159–174.
MR 3060387 |
Zbl 1262.35006
[3] Bohner, M., Peterson, A.:
Dynamic equations on time scales. Birkhauser Boston–Berlin, 2001.
MR 1843232 |
Zbl 0993.39010
[4] Bohner, M., Peterson, A.:
Advances in dynamic equations on time scales. Birkhauser Boston–Berlin, 2003.
MR 1962542 |
Zbl 1025.34001
[5] Hilger, S.:
Analysis on measure chain – A unified approch to continuous and discrete calculus. Results Math. 18 (1990), 18–56.
DOI 10.1007/BF03323153 |
MR 1066641
[7] Pachpatte, D.B.:
Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7 (4) (2006), Article 143.
MR 2268597 |
Zbl 1182.26068
[8] Pachpatte, D.B.:
Properties of solutions to nonlinear dynamic integral equations on time scales. Electron. J. Differential Equations 2008 (2008), no. 130, 1–8.
MR 2448891 |
Zbl 1165.39017
[9] Pachpatte, D.B.:
Integral inequalities for partial dynamic equations on time scales. Electron. J. Differential Equations 2012 (2012), no. 50, 1–7.
MR 2927786 |
Zbl 1238.26032
[10] Pachpatte, D.B.: Properties of some partial dynamic equations on time scales. Internat. J. Partial Differential Equations 2013 (2013), 9pp., Art. ID 345697.
[12] Saker, S.H.:
Bounds of double integral dynamic inequalities in two independent variables on time scales. Discrete Dynamics in Nature and Society (2011), Art. 732164.
MR 2861953 |
Zbl 1238.26033
[13] Saker, S.H.:
Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14 (2011), 633–645.
MR 2850178 |
Zbl 1222.26032