Previous |  Up |  Next

Article

Keywords:
metric space; fixed point; $F$-contraction; $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type
Summary:
The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for $\alpha $-$\eta $-$GF$-contraction in a complete metric space. We extend the concept of $F$-contraction into an $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results.
References:
[1] Abdeljawad, T.: Meir-Keeler $\alpha $-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. (2013). DOI:  http://dx.doi.org/10.1186/1687-1812-2013-19 DOI 10.1186/1687-1812-2013-19 | MR 3022841 | Zbl 1295.54038
[2] Arshad, M., Fahimuddin, , Shoaib, A., Hussain, A.: Fixed point results for $\alpha $-$\psi $-locally graphic contraction in dislocated quasi metric spaces. Mathematical Sciences (2014), 7 pp. DOI:  http://dx.doi.org/10.1007/s40096-014-0132 DOI 10.1007/s40096-014-0132
[3] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 3 (1922), 133–181.
[4] Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273. DOI 10.2307/2040075 | MR 0356011 | Zbl 0291.54056
[5] Cosentino, M., Vetro, P.: Fixed point results for $F$-contractive mappings of Hardy-Rogers-type. Filomat 28 (4) (2014), 715–722. DOI:  http://dx.doi.org/10.2298/FIL 1404715C DOI 10.2298/FIL1404715C | MR 3360064
[6] Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37 (1962), 74–79. DOI 10.1112/jlms/s1-37.1.74 | MR 0133102 | Zbl 0113.16503
[7] Fisher, B.: Set-valued mappings on metric spaces. Fund. Math. 112 (2) (1981), 141–145. MR 0619490 | Zbl 0479.54026
[8] Geraghty, M.: On contractive mappings. Proc. Amer. Math. Soc. 40 (1973), 604–608. DOI 10.1090/S0002-9939-1973-0334176-5 | MR 0334176 | Zbl 0245.54027
[9] Hussain, N., Al-Mezel, S., Salimi, P.: Fixed points for $\alpha $-$\psi $-graphic contractions with application to integral equations. Abstr. Appl. Anal. (2013), Article 575869. MR 3108673
[10] Hussain, N., Arshad, M., Shoaib, A., Fahimuddin, : Common fixed point results for $\alpha $-$\psi $-contractions on a metric space endowed with graph. J. Inequal. Appl. 136 (2014). MR 3284402 | Zbl 1310.54050
[11] Hussain, N., Karapınar, E., Salimi, P., Akbar, F.: $\alpha $-admissible mappings and related fixed point theorems. J. Inequal. Appl. 114 (2013), 1–11. MR 3047105 | Zbl 1293.54023
[12] Hussain, N., Karapınar, E., Salimi, P., Vetro, P.: Fixed point results for $G^{m}$-Meir-Keeler contractive and $G$-$(\alpha ,\psi )$-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 34 (2013). Zbl 1293.54024
[13] Hussain, N., Kutbi, M.A., Salimi, P.: Fixed point theory in $\alpha $-complete metric spaces with applications. Abstr. Appl. Anal. (2014), 11pp., Article ID 280817. MR 3166589
[14] Hussain, N., Salimi, P.: Suzuki-Wardowski type fixed point theorems for $\alpha $-$GF$-contractions. Taiwanese J. Math. 18 (6) (2014), 1879–1895. DOI:  http://dx.doi.org/10.11650/tjm.18.2014.4462 DOI 10.11650/tjm.18.2014.4462 | MR 3284036
[15] Hussain, N., Salimi, P., Latif, A.: Fixed point results for single and set-valued $\alpha $-$\eta $-$\psi $-contractive mappings. Fixed Point Theory Appl. 212 (2013). MR 3103005 | Zbl 1293.54025
[16] Karapınar, E., Samet, B.: Generalized $(\alpha -\psi )$ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. (2012), Article ID 793486. MR 2965472 | Zbl 1252.54037
[17] Kutbi, M.A., Arshad, M., Hussain, A.: On modified $\alpha $-$\eta $-contractive mappings. Abstr. Appl. Anal. 2014 (2014), 7pp., Article ID 657858. MR 3246349
[18] Nadler, S.B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475–488. DOI 10.2140/pjm.1969.30.475 | MR 0254828
[19] Piri, H., Kumam, P.: Some fixed point theorems concerning $F$-contraction in complete metric spaces. Fixed Point Theory Appl. 210 (2014). MR 3357360
[20] Salimi, P., Latif, A., Hussain, N.: Modified $\alpha $-$\psi $-contractive mappings with applications. Fixed Point Theory Appl. 151 (2013). MR 3074018 | Zbl 1293.54036
[21] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha $-$\psi $-contractive type mappings. Nonlinear Anal. 75 (2012), 2154–2165. DOI 10.1016/j.na.2011.10.014 | MR 2870907 | Zbl 1242.54027
[22] Secelean, N.A.: Iterated function systems consisting of $F$-contractions. Fixed Point Theory Appl. (2013), Article ID 277 (2013). DOI:  http://dx.doi.org/10.1186/1687-1812-2013-277 DOI 10.1186/1687-1812-2013-277 | MR 3213104
[23] Sgroi, M., Vetro, C.: Multi-valued $F$-contractions and the solution of certain functional and integral equations. Filomat 27 (7) (2013), 1259–1268. DOI 10.2298/FIL1307259S | MR 3243997
[24] Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. (2012), Article ID 94 (2012). MR 2949666
Partner of
EuDML logo