Previous |  Up |  Next

Article

Keywords:
characterization; Hausdorff completion; lattice homomorphisms; locally solid topological $l$-groups; neighborhood theorem; order-bounded subsets
Summary:
Locally solid Riesz spaces have been widely investigated in the past several decades; but locally solid topological lattice-ordered groups seem to be largely unexplored. The paper is an attempt to initiate a relatively systematic study of locally solid topological lattice-ordered groups. We give both Roberts-Namioka-type characterization and Fremlin-type characterization of locally solid topological lattice-ordered groups. In particular, we show that a group topology on a lattice-ordered group is locally solid if and only if it is generated by a family of translation-invariant lattice pseudometrics. We also investigate (1) the basic properties of lattice group homomorphism on locally solid topological lattice-ordered groups; (2) the relationship between order-bounded subsets and topologically bounded subsets in locally solid topological lattice-ordered groups; (3) the Hausdorff completion of locally solid topological lattice-ordered groups.
References:
[1] Aliprantis, C.D.: On the completion of Hausdorff locally solid Riesz spaces. Trans. Amer. Math. Soc. 196 (1974), 105–125. DOI 10.1090/S0002-9947-1974-0350372-0 | MR 0350372 | Zbl 0258.46009
[2] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Berlin, Heidelberg, New York., 1985. MR 0809372 | Zbl 0608.47039
[3] Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. second ed., Springer, Berlin, Heidelberg, New York, 2003. MR 2011364 | Zbl 1043.46003
[4] Arhangel’skii, A., Tkachenko, M.: Topological groups and related structures. Atlantic Press, Amsterdam, Paris, 2008. MR 2433295
[5] Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3 (1) (1937), 68–122. DOI 10.1215/S0012-7094-37-00308-9 | MR 1545974 | Zbl 0016.20303
[6] Ball, R.N.: Topological lattice ordered groups. Pacific J. Math. 83 (1) (1979), 1–26. DOI 10.2140/pjm.1979.83.1 | MR 0555035 | Zbl 0434.06016
[7] Ball, R.N.: Convergence and Cauchy structures on lattice ordered groups. Trans. Amer. Math. Soc. 259 (2) (1980), 357–392. DOI 10.1090/S0002-9947-1980-0567085-5 | MR 0567085 | Zbl 0441.06015
[8] Beckenstein, E., Narici, L., Suffel, C.: Topological Algebras. North-Holland, Amsterdam, 1977. MR 0473835 | Zbl 0348.46041
[9] Birkhoff, G.: Lattice-ordered groups. Ann. of Math. 43 (2) (1941), 298–331. DOI 10.2307/1968871 | MR 0006550
[10] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ., vol. 25, Providence, Rhode Island, third ed., 1967. MR 0029876 | Zbl 0153.02501
[11] Bourbaki, N.: Elements of Mathematics: Topological Vectors Spaces. ch. 1–5, Springer, Berlin, New York, 1987. MR 0910295
[12] Clifford, A.H.: Partially ordered abelian groups. Ann. of Math. 41 (1940), 465–473. DOI 10.2307/1968728 | MR 0002134 | Zbl 0025.00801
[13] Fremlin, D.H.: On the completion of locally solid vector lattice. Pacific J. Math. 43 (1972), 341–347. DOI 10.2140/pjm.1972.43.341 | MR 0318832
[14] Fremlin, D.H.: Topological Riesz Spaces and Measure Theorey. Cambridge University Press, Cambridge, 1974. MR 0454575
[15] Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, New York, 1963. MR 0171864 | Zbl 0137.02001
[16] Fuchs, L.: Riesz groups. Ann. Scuola Norm. Sup. Pisa 19 (1965), 1–34. MR 0180609 | Zbl 0125.28703
[17] Fuchs, L.: Riesz vector spaces and Riesz algebra. Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ont., 1966. MR 0203436
[18] Goffman, C.: A lattice homomorphism of a lattice ordered group. Proc. Amer. Math. Soc. 8 (1957), 547–550. DOI 10.1090/S0002-9939-1957-0087661-9 | MR 0087661 | Zbl 0081.25801
[19] Gusić, : A topology on lattice ordered groups. Proc. Amer. Math. Soc. 126 (9) (1998), 2593–2597. DOI 10.1090/S0002-9939-98-04386-X | MR 1452805 | Zbl 0943.06009
[20] Husain, T.: Introduction to Topological Groups. W.B. Sounders Company, Philadelphia, London, 1966. MR 0200383 | Zbl 0136.29402
[21] Jaffard, P.: Contribution à l’étude des groupes ordonnés. J. Math. Pures Appl. 32 (1953), 203–280, (French). MR 0057869 | Zbl 0051.01303
[22] Kawai, I.: Locally convex lattices. J. Mat. Soc. Japan 9, 281–314. DOI 10.2969/jmsj/00930281 | MR 0095399 | Zbl 0079.32203
[23] Khan, A.R., Rowlands, K.: On locally solid topological lattice groups. Czechoslovak Math. J. 57 (3) (2007), 963–973. DOI 10.1007/s10587-007-0088-y | MR 2356933 | Zbl 1174.54025
[24] Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, I. North-Holland, Amsterdam, 1971.
[25] Nakano, H.: Linear topologies on semi-ordered linear spaces. J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953), 87–104. MR 0056851 | Zbl 0053.25702
[26] Namioka, I.: Partially ordered linear topological spaces. Mem. Amer. Math. Soc., vol. 24, 1957, p. 50pp. MR 0094681 | Zbl 0105.08901
[27] Pierce, R.: Homomorphisms of semi-groups. Ann. of Math. 59 (2), 287–291. DOI 10.2307/1969693 | MR 0062120 | Zbl 0055.01502
[28] Pontrjagin, L.: Topological Groups. Princeton University Press, Princeton, NJ, 1946, Translated by Emma Lehmer.
[29] Redfield, R.H.: A topology for a lattice-ordered group. Trans. Amer. Math. Soc. 187 (1974), 103–125. DOI 10.1090/S0002-9947-1974-0327607-3 | MR 0327607 | Zbl 0302.06028
[30] Roberts, G.T.: Topologies in vector lattices. Math. Proc. Cambridge Philos. Soc. (1952). MR 0050873 | Zbl 0047.10503
[31] Šmarda, B.: Topologies in $l$-groups. Arch. Math. (Brno) 3 (2) (1967), 69–81. MR 0223283
[32] Šmarda, B.: Some types of topological $l$-groups. Publ. Fac. Sci. Univ. J. E. Purkyne Brno, vol. 507, 1969. MR 0272940 | Zbl 0241.22003
[33] Teller, J.R.: On the extensions of lattice-ordered groups. Pacific J. Math. 14 (2) (1964), 709–718. DOI 10.2140/pjm.1964.14.709 | MR 0163970 | Zbl 0122.27904
[34] Willard, S.: General Topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581 | Zbl 0205.26601
[35] Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin, Heidelberg, New York, 1997. MR 1631533 | Zbl 0878.47022
Partner of
EuDML logo