Article
Keywords:
correct solvability; differential equation of the first order
Summary:
We consider the equation \begin{equation} - r(x)y^{\prime }(x)+q(x)y(x)=f(x)\,,\quad x\in \mathbb{R} \end{equation} where $f\in L_p(\mathbb{R}) $, $p\in [1,\infty ]$ ($L_\infty (\mathbb{R}):=C(\mathbb{R})$) and \begin{equation} 0<r\in C^{}(\mathbb{R})\,,\quad 0\le q\in L_1^{}(\mathbb{R})\,. \end{equation} We obtain minimal requirements to the functions $r$ and $q$, in addition to (), under which equation () is correctly solvable in $L_p(\mathbb{R})$, $p\in [1,\infty ]$.
References:
[2] Chernyavskaya, N., Shuster, L.:
Conditions for correct solvability of a simplest singular boundary value problem of general form. I. Z. Anal. Anwendungen 25 (2006), 205–235.
DOI 10.4171/ZAA/1285 |
MR 2229446 |
Zbl 1122.34021
[3] Chernyavskaya, N., Shuster, L.:
Conditions for correct solvability of a simplest singular boundary value problem of general form. II. Z. Anal. Anwendungen 26 (2007), 439–458.
DOI 10.4171/ZAA/1334 |
MR 2341766 |
Zbl 1139.34010
[4] Kantorovich, L.W., Akilov, G.P.:
Functional Analysis. Nauka, Moscow, 1977.
MR 0511615
[5] Lukachev, M., Shuster, L.:
On uniqueness of soltuion of a linear differential equation without boundary conditions. Funct. Differ. Equ. 14 (2007), 337–346.
MR 2323215
[6] Mynbaev, K., Otelbaev, M.:
Weighted Function Spaces and the Spectrum of Differential Operators. Nauka, Moscow, 1988.
MR 0950172
[7] Opic, B., Kufner, A.:
Hardy Type Inequalities. Pitman Research Notes in Mathematics Series, vol. 219, Harlow, Longman, 1990.
MR 1069756 |
Zbl 0698.26007
[8] Otelbaev, M.:
Estimates of the Spectrum of the Sturm-Liouville Operator. Alma-Ata, Gilim, 1990, in Russian.
Zbl 0747.47029