Previous |  Up |  Next

Article

Keywords:
inverse categories; inverse monoids; split idempotents; pointed sets; annihilators; exact sequences
Summary:
We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators.
References:
[1] Clifford, A.H.: A class of d-simple semigroups. Amer. J. Math. 75 (1953), 547–556. DOI 10.2307/2372503 | MR 0056597 | Zbl 0051.01302
[2] Jones, D.G., Lawson, M.V.: Graph inverse semigroups: their characterization and completion. J. Algebra 409 (2014), 444–473. DOI 10.1016/j.jalgebra.2014.04.001 | MR 3198850
[3] Kastl, J.: Inverse categories. Studien zur Algebra und ihre Anwendungen, Akademie-Verlag Berlin, 1979, BAnd 7, pp. 51–60. MR 0569574 | Zbl 0427.18003
[4] Kawahara, Y.: Relations in categories with pullbacks. Mem. Kyushu University, Series A, Math. 27 (1973), 149–173. DOI 10.2206/kyushumfs.27.149 | MR 0390017 | Zbl 0261.18005
[5] Leech, J.: Constructing inverse monoids from small categories. Semigroup Forum 36 (1987), 89–116. DOI 10.1007/BF02575008 | MR 0902733 | Zbl 0634.18002
[6] Mitchell, B.: Theory of categories. Acad. Press New York, 1965. MR 0202787 | Zbl 0136.00604
[7] Schwab, E.: Image and inverse image mappings in exact inverse categories. Boll. U.M.I. 18–B (1981), 831–845. MR 0641740 | Zbl 0477.18002
[8] Schwab, E., Schwab, E.D.: Quantum logic, dagger kernel categories and inverse Baer*-categories. Order 296 (2012), 405–417. DOI 10.1007/s11083-011-9211-7 | MR 2979640
[9] Schwab, E.D., Stoianov, G.: A Dirichlet analogue of the free monogenic inverse semigroup via Möbius inversion. Rocky Mountain J. Math 41 (2011), 1701–1710. DOI 10.1216/RMJ-2011-41-5-1701 | MR 2838084 | Zbl 1233.20055
Partner of
EuDML logo