Previous |  Up |  Next

Article

Keywords:
frame; ring of real-valued continuous functions; weakly spatial frame; fixed and strongly fixed ideal
Summary:
Let $C(L)$ be the ring of real-valued continuous functions on a frame $L$. In this paper, strongly fixed ideals and characterization of maximal ideals of $C(L)$ which is used with strongly fixed are introduced. In the case of weakly spatial frames this characterization is equivalent to the compactness of frames. Besides, the relation of the two concepts, fixed and strongly fixed ideals of $C(L)$, is studied particularly in the case of weakly spatial frames. The concept of weakly spatiality is actually weaker than spatiality and they are equivalent in the case of conjunctive frames. Assuming Axiom of Choice, compact frames are weakly spatial.
References:
[1] Banaschewski, B.: Prime elements from prime ideals. Order 2 (2) (1985), 211–213. DOI 10.1007/BF00334858 | MR 0815866 | Zbl 0576.06010
[2] Banaschewski, B.: Pointfree topology and the spectra of f-rings. Ordered algebraic structures, (Curacoa, 1995), Kluwer Acad. Publ., Dordrecht, 1997, pp. 123–148. MR 1445110 | Zbl 0870.06017
[3] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática (Série B), Vol. 12, University of Coimbra, Departmento de Mathemática, Coimbra, 1997. MR 1621835 | Zbl 0891.54009
[4] Banaschewski, B., Gilmour, C.R.A.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37 (1996), 577–587. MR 1426922 | Zbl 0881.54018
[5] Dube, T.: Some ring-theoretic properties of almost $P$-frames. Algebra Universalis 60 (2009), 145–162. DOI 10.1007/s00012-009-2093-5 | MR 2491419 | Zbl 1186.06006
[6] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hungar. 129 (2010), 205–226. DOI 10.1007/s10474-010-0024-8 | MR 2737723 | Zbl 1299.06021
[7] Dube, T.: A broader view of the almost Lindelf property. Algebra Universalis 65 (2011), 263–276. DOI 10.1007/s00012-011-0127-2 | MR 2793399
[8] Dube, T.: Real ideal in pointfree rings of continuous functions. Bull. Asut. Math. Soc. 83 (2011), 338–352. MR 2784791
[9] Dube, T.: Extending and contracting maximal ideals in the function rings of pointfree topology. Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (4) (2012), 365–374. MR 2963403 | Zbl 1274.06038
[10] Ebrahimi, M.M., Karimi, A.: Pointfree prime representation of real Riesz maps. Algebra Universalis 2005 (54), 291–299. MR 2219412
[11] Estaji, A.A., Feizabadi, A. Karimi, Abedi, M.: Zero sets in pointfree topology and strongly $z$-ideals. accepted in Bulletin of the Iranian Mathematical Society.
[12] Garcáa, J. Gutiérrez, Picado, J.: How to deal with the ring of (continuous) real-valued functions in terms of scales. Proceedings of the Workshop in Applied Topology WiAT'10, 2010, pp. 19–30.
[13] Gillman, L., Jerison, M.: Rings of continuous functions. Springer Verlag, 1979. MR 0407579
[14] Johnstone, P.T.: Stone Spaces. Cambridge Univ. Press, 1982. MR 0698074 | Zbl 0499.54001
[15] Paseka, J.: Conjunctivity in quantales. Arch. Math. (Brno) 24 (4) (1988), 173–179. MR 0983235 | Zbl 0663.06011
[16] Paseka, J., Šmarda, B.: $T_2$-frames and almost compact frames. Czechoslovak Math. J. 42 (3) (1992), 385–402. MR 1179302
[17] Picado, J., Pultr, A.: Frames and Locales: topology without points. Frontiers in Mathematics, Springer, Basel, 2012. MR 2868166 | Zbl 1231.06018
[18] Simmons, H.: The lattice theoretical part of topological separation properties. Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. MR 0493959
Partner of
EuDML logo