[2] Banaschewski, B.:
Pointfree topology and the spectra of f-rings. Ordered algebraic structures, (Curacoa, 1995), Kluwer Acad. Publ., Dordrecht, 1997, pp. 123–148.
MR 1445110 |
Zbl 0870.06017
[3] Banaschewski, B.:
The real numbers in pointfree topology. Textos de Mathemática (Série B), Vol. 12, University of Coimbra, Departmento de Mathemática, Coimbra, 1997.
MR 1621835 |
Zbl 0891.54009
[4] Banaschewski, B., Gilmour, C.R.A.:
Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37 (1996), 577–587.
MR 1426922 |
Zbl 0881.54018
[8] Dube, T.:
Real ideal in pointfree rings of continuous functions. Bull. Asut. Math. Soc. 83 (2011), 338–352.
MR 2784791
[9] Dube, T.:
Extending and contracting maximal ideals in the function rings of pointfree topology. Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (4) (2012), 365–374.
MR 2963403 |
Zbl 1274.06038
[10] Ebrahimi, M.M., Karimi, A.:
Pointfree prime representation of real Riesz maps. Algebra Universalis 2005 (54), 291–299.
MR 2219412
[11] Estaji, A.A., Feizabadi, A. Karimi, Abedi, M.: Zero sets in pointfree topology and strongly $z$-ideals. accepted in Bulletin of the Iranian Mathematical Society.
[12] Garcáa, J. Gutiérrez, Picado, J.: How to deal with the ring of (continuous) real-valued functions in terms of scales. Proceedings of the Workshop in Applied Topology WiAT'10, 2010, pp. 19–30.
[13] Gillman, L., Jerison, M.:
Rings of continuous functions. Springer Verlag, 1979.
MR 0407579
[16] Paseka, J., Šmarda, B.:
$T_2$-frames and almost compact frames. Czechoslovak Math. J. 42 (3) (1992), 385–402.
MR 1179302
[17] Picado, J., Pultr, A.:
Frames and Locales: topology without points. Frontiers in Mathematics, Springer, Basel, 2012.
MR 2868166 |
Zbl 1231.06018
[18] Simmons, H.:
The lattice theoretical part of topological separation properties. Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48.
MR 0493959