Article
Keywords:
correct solvability; Sturm-Liouville equation
Summary:
We consider the equation $$\label {1} - (r(x)y'(x))'+q(x)y(x)=f(x),\quad x\in \mathbb R \eqno {(*)} $$ where $f\in L_p(\mathbb R)$, $p\in (1,\infty )$ and \begin {gather} r>0,\quad q\ge 0,\quad \frac {1}{r}\in L_1^{\rm loc}(\mathbb R),\quad q\in L_1^{\rm loc}(\mathbb R), \nonumber \\ \lim _{|d|\to \infty }\int _{x-d}^x \frac {{\rm d} t}{r(t)}\cdot \int _{x-d}^x q(t) {\rm d} t=\infty . \nonumber \end {gather} In an earlier paper, we obtained a criterion for correct solvability of ($*$) in $L_p(\mathbb R),$ $p\in (1,\infty ).$ In this criterion, we use values of some auxiliary implicit functions in the coefficients $r$ and $q$ of equation ($*$). Unfortunately, it is usually impossible to compute values of these functions. In the present paper we obtain sharp by order, two-sided estimates (an estimate of a function $f(x)$ for $x\in (a,b)$ through a function $g(x)$ is sharp by order if $c^{-1}|g(x)|\le |f(x)|\le c|g(x)|,$ $x\in (a,b),$ $c=\rm const$) of auxiliary functions, which guarantee efficient study of the problem of correct solvability of ($*$) in $L_p(\mathbb R),$ $p\in (1,\infty ).$
References:
[1] Chernyavskaya, N. A., El-Natanov, N., Shuster, L. A.:
Weighted estimates for solutions of a Sturm-Liouville equation in the space $L_1(\mathbb R)$. Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011), 1175-1206.
MR 2855893
[2] Chernyavskaya, N., Shuster, L.:
A criterion for correct solvability in $L_p(\mathbb R)$ of a general Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120.
DOI 10.1112/jlms/jdp012 |
MR 2520380
[4] Chernyavskaya, N., Shuster, L.:
Regularity of the inversion problem for a Sturm-Liouville equation in $L_p(\mathbb R)$. Methods Appl. Anal. 7 (2000), 65-84.
MR 1796006
[6] Chernyavskaya, N., Shuster, L.:
Solvability in $L_p$ of the Neumann problem for a singular non-homogeneous Sturm-Liouville equation. Mathematika 46 (1999), 453-470.
DOI 10.1112/S0025579300007919 |
MR 1832636
[7] Chernyavskaya, N., Shuster, L.:
Solvability in $L_p$ of the Dirichlet problem for a singular nonhomogeneous Sturm-Liouville equation. Methods Appl. Anal. 5 (1998), 259-272.
MR 1659147 |
Zbl 0924.34012
[8] Mynbaev, K. T., Otelbaev, M. O.:
Weighted Function Spaces and the Spectrum of Differential Operators. Nauka, Moskva Russian (1988).
MR 0950172
[9] Titchmarsh, E. C.:
The Theory of Functions. (2. ed.). University Press, Oxford (1939).
MR 0197687