Previous |  Up |  Next

Article

Keywords:
nilpotent $n$-Lie superalgebra; Engel's theorem; $S^{\ast }$ algebra; Frattini subalgebra
Summary:
The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel's theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel's theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.
References:
[1] Albeverio, S., Ayupov, S. A., Omirov, B. A., Turdibaev, R. M.: Cartan subalgebras of Leibniz $n$-algebras. Commun. Algebra 37 (2009), 2080-2096. DOI 10.1080/00927870802319406 | MR 2530764 | Zbl 1236.17004
[2] Bai, R. P., Chen, L. Y., Meng, D. J.: The Frattini subalgebra of $n$-Lie algebras. Acta Math. Sin., Engl. Ser. 23 (2007), 847-856. DOI 10.1007/s10114-005-0923-8 | MR 2307826 | Zbl 1152.17004
[3] Barnes, D. W.: Some theorems on Leibniz algebras. Commun. Algebra 39 (2011), 2463-2472. DOI 10.1080/00927872.2010.489529 | MR 2821724 | Zbl 1268.17001
[4] Barnes, D. W.: Engel subalgebras of $n$-Lie algebras. Acta Math. Sin., Engl. Ser. 24 (2008), 159-166. DOI 10.1007/s10114-007-1008-7 | MR 2384240 | Zbl 1176.17002
[5] Camacho, L. M., Casas, J. M., Gómez, J. R., Ladra, M., Omirov, B. A.: On nilpotent Leibniz $n$-algebras. J. Algebra Appl. 11 (2012), Article ID 1250062, 17 pages. DOI 10.1142/S0219498812500624 | MR 2928129 | Zbl 1302.17003
[6] Cantarini, N., Kac, V. G.: Classification of simple linearly compact $n$-Lie superalgebras. Commun. Math. Phys. 298 (2010), 833-853. DOI 10.1007/s00220-010-1049-0 | MR 2670929 | Zbl 1232.17008
[7] Casas, J. M., Khmaladze, E., Ladra, M.: On solvability and nilpotency of Leibniz $n$-algebras. Commun. Algebra 34 (2006), 2769-2780. DOI 10.1080/00927870600636423 | MR 2250568 | Zbl 1127.17003
[8] Chao, C.-Y.: Some characterizations of nilpotent Lie algebras. Math. Z. 103 (1968), 40-42. DOI 10.1007/BF01111285 | MR 0223415 | Zbl 0178.03603
[9] Chao, C. Y., Stitzinger, E. L.: On nilpotent Lie algebras. Arch. Math. 27 (1976), 249-252. DOI 10.1007/BF01224667 | MR 0409580 | Zbl 0334.17004
[10] Chen, L., Meng, D.: On the intersection of maximal subalgebras in a Lie superalgebra. Algebra Colloq. 16 (2009), 503-516. MR 2536774 | Zbl 1235.17009
[11] Daletskiĭ, Y. L., Kushnirevich, V. A.: Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry. Dopov. Akad. Nauk Ukr. 1996 Russian (1996), 12-17. MR 1417608
[12] Gago, F., Ladra, M., Omirov, B. A., Turdibaev, R. M.: Some radicals, Frattini and Cartan subalgebras of Leibniz {$n$}-algebras. Linear Multilinear Algebra 61 (2013), 1510-1527. DOI 10.1080/03081087.2012.758260 | MR 3175382
[13] Kasymov, S. M.: On a theory of {$n$}-Lie algebras. Algebra i Logika 26 (1987), Russian 277-297 English translation in Algebra and Logic 26 155-166 (1987). DOI 10.1007/BF02009328 | MR 0962883
[14] Ray, C. B., Combs, A., Gin, N., Hedges, A., Hird, J. T., Zack, L.: Nilpotent Lie and Leibniz algebras. Commun. Algebra 42 (2014), 2404-2410. DOI 10.1080/00927872.2012.717655 | MR 3169714
[15] Williams, M. P.: Nilpotent {$n$}-Lie algebras. Commun. Algebra 37 (2009), 1843-1849. DOI 10.1080/00927870802108007 | MR 2530747 | Zbl 1250.17003
Partner of
EuDML logo