Previous |  Up |  Next

Article

Keywords:
Gibbs random field; efficient estimator; empirical estimator
Summary:
An efficient estimator for the expectation $\int f \d P$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.
References:
[1] Bickel, P. J., Klaassen, C. A. J., Ritov, Y., Wellner, J. A.: Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore 1993. MR 1245941 | Zbl 0894.62005
[2] Dobrushin, R. L.: Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15 (1970), 458-486. DOI 10.1137/1115049 | Zbl 0264.60037
[3] Dobrushin, R. L., Nahapetian, B. S.: Strong convexity of the pressure for lattice systems of classical physics (in Russian). Teoret. Mat. Fiz. 20 (1974), 223-234. MR 0468967
[4] Georgii, H. O.: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics 9, De Gruyter, Berlin 1988. MR 0956646 | Zbl 1225.60001
[5] Greenwood, P. E., Wefelmeyer, W.: Efficiency of empirical estimators for Markov Chains. Ann. Statist. 23 (1995), 132-143. DOI 10.1214/aos/1176324459 | MR 1331660 | Zbl 0822.62067
[6] Greenwood, P. E., Wefelmeyer, W.: Characterizing efficient empirical estimators for local interaction Gibbs fields. Stat. Inference Stoch. Process. 2 (1999), 119-134. DOI 10.1023/A:1009993904851 | MR 1918878 | Zbl 0961.62084
[7] Gross, K.: Absence of second-order phase transitions in the Dobrushin uniqueness region. J. Statist. Phys. 25 (1981), 57-72. DOI 10.1007/BF01008479 | MR 0610692
[8] Hájek, J.: A characterization of limiting distributions of regular estimates. Wahrsch. Verw. Gebiete 14 (1970), 323-330. DOI 10.1007/BF00533669 | MR 0283911 | Zbl 0193.18001
[9] Janžura, M.: Statistical analysis of Gibbs random fields. In: Trans. 10th Prague Conference on Inform. Theory, Stat. Dec. Functions, Random Processes, Prague 1984, pp. 429-438. MR 1136301 | Zbl 0708.62092
[10] Janžura, M.: Local asymptotic normality for Gibbs random fields. In: Proc. Fourth Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284. MR 1051446 | Zbl 0697.62091
[11] Janžura, M.: Asymptotic behaviour of the error probabilities in the pseudo-likelihood ratio test for Gibbs-Markov distributions. In: Prof. Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica-Verlag, Heidelberg 1994, pp. 285-296. MR 1311947
[12] Janžura, M.: Asymptotic results in parameter estimation for Gibbs random fields. Kybernetika 33 (1997), 2, 133-159. MR 1454275 | Zbl 0962.62092
[13] Janžura, M.: On the concept of the asymptotic Rényi distances for random fields. Kybernetika 35 (1999), 3, 353-366. MR 1704671 | Zbl 1274.62061
[14] Künsch, H.: Decay of correlations under Dobrushin's uniqueness condition and its applications. Comm. Math. Phys. 84 (1982), 207-222. DOI 10.1007/BF01208568 | MR 0661133
[15] Younes, L.: Parameter inference for imperfectly observed Gibbsian fields. Probab. Theory Rel. Fields 82 (1989), 625-645. DOI 10.1007/BF00341287 | MR 1002904
Partner of
EuDML logo