[1] Bickel, P. J., Klaassen, C. A. J., Ritov, Y., Wellner, J. A.:
Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore 1993.
MR 1245941 |
Zbl 0894.62005
[2] Dobrushin, R. L.:
Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15 (1970), 458-486.
DOI 10.1137/1115049 |
Zbl 0264.60037
[3] Dobrushin, R. L., Nahapetian, B. S.:
Strong convexity of the pressure for lattice systems of classical physics (in Russian). Teoret. Mat. Fiz. 20 (1974), 223-234.
MR 0468967
[4] Georgii, H. O.:
Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics 9, De Gruyter, Berlin 1988.
MR 0956646 |
Zbl 1225.60001
[7] Gross, K.:
Absence of second-order phase transitions in the Dobrushin uniqueness region. J. Statist. Phys. 25 (1981), 57-72.
DOI 10.1007/BF01008479 |
MR 0610692
[9] Janžura, M.:
Statistical analysis of Gibbs random fields. In: Trans. 10th Prague Conference on Inform. Theory, Stat. Dec. Functions, Random Processes, Prague 1984, pp. 429-438.
MR 1136301 |
Zbl 0708.62092
[10] Janžura, M.:
Local asymptotic normality for Gibbs random fields. In: Proc. Fourth Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284.
MR 1051446 |
Zbl 0697.62091
[11] Janžura, M.:
Asymptotic behaviour of the error probabilities in the pseudo-likelihood ratio test for Gibbs-Markov distributions. In: Prof. Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica-Verlag, Heidelberg 1994, pp. 285-296.
MR 1311947
[12] Janžura, M.:
Asymptotic results in parameter estimation for Gibbs random fields. Kybernetika 33 (1997), 2, 133-159.
MR 1454275 |
Zbl 0962.62092
[13] Janžura, M.:
On the concept of the asymptotic Rényi distances for random fields. Kybernetika 35 (1999), 3, 353-366.
MR 1704671 |
Zbl 1274.62061
[14] Künsch, H.:
Decay of correlations under Dobrushin's uniqueness condition and its applications. Comm. Math. Phys. 84 (1982), 207-222.
DOI 10.1007/BF01208568 |
MR 0661133
[15] Younes, L.:
Parameter inference for imperfectly observed Gibbsian fields. Probab. Theory Rel. Fields 82 (1989), 625-645.
DOI 10.1007/BF00341287 |
MR 1002904