[2] Bailey, D. H.:
Sequential Schemes for Classifying and Predicting Ergodic Processes. Ph. D. Thesis, Stanford University 1976.
MR 2626644
[3] Bunea, F., Nobel, A.:
Sequential procedures for aggregating arbitrary estimators of a conditional mean. IEEE Trans. Inform. Theory 54 (2008), 4, 1725-1735.
DOI 10.1109/TIT.2008.917657 |
MR 2450298
[4] Feller, W.:
An Introduction to Probability Theory and its Applications. Vol. II. Second edition. John Wiley and Sons, New York - London - Sydney 1971.
MR 0270403
[6] Morvai, G., Weiss, B.:
Inferring the conditional mean. Theory Stoch. Process. 11 (2005), 112-120.
MR 2327452 |
Zbl 1164.62382
[10] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series. In: Proc. ITW2009, Volos 2009, pp. 67-70.
[11] Morvai, G., Weiss, B.:
A note on prediction for discrete time series. Kybernetika 48 (2012), 4, 809-823.
MR 3013400
[12] Ryabko, B. Ya.:
Prediction of random sequences and universal coding. Probl. Inf. Trans. 24 (1988), 87-96.
MR 0955983 |
Zbl 0666.94009
[14] Shiryayev, A. N.:
Probability. Springer-Verlag, New York 1984.
MR 0737192