Previous |  Up |  Next

Article

Keywords:
signless Laplacian spectrum; cospectral graphs; $T$-shape tree
Summary:
A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply $G$ is $DQS$). Let $T(a,b,c)$ denote the $T$-shape tree obtained by identifying the end vertices of three paths $P_{a+2}$, $P_{b+2}$ and $P_{c+2}$. We prove that its all line graphs $\mathcal {L}(T(a,b,c))$ except $\mathcal {L}(T(t,t,2t+1))$ ($t\geq 1$) are $DQS$, and determine the graphs which have the same signless Laplacian spectrum as $\mathcal {L}(T(t,t,2t+1))$. Let $\mu _1(G)$ be the maximum signless Laplacian eigenvalue of the graph $G$. We give the limit of $\mu _1(\mathcal {L}(T(a,b,c)))$, too.
References:
[1] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. 3rd rev. a. enl. J. A. Barth, Leipzig (1995). MR 1324340 | Zbl 0824.05046
[2] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. DOI 10.1016/j.laa.2007.01.009 | MR 2312332
[3] Cvetković, D., Rowlinson, P., Simić, S. K.: Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math., Nouv. Sér. 81 (2007), 11-27. DOI 10.2298/PIM0795011C | MR 2401311 | Zbl 1164.05038
[4] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. I. Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. MR 2536686
[5] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on signless Laplacian. II. Linear Algebra Appl. 432 (2010), 2257-2272. DOI 10.1016/j.laa.2009.05.020 | MR 2599858
[6] Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B.: Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$. Linear Algebra Appl. 420 (2007), 483-489. MR 2278224 | Zbl 1107.05058
[7] Omidi, G. R.: On a signless Laplacian spectral characterizaiton of $T$-shape trees. Linear Algebra Appl. 431 (2009), 1607-1615. DOI 10.1016/j.laa.2009.05.035 | MR 2555062
[8] Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B.: A note on the spectral characterization of $\theta$-graphs. Linear Algebra Appl. 431 (2009), 626-632. MR 2535538 | Zbl 1203.05098
[9] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. MR 2022290
[10] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs. Discrete Math. 309 (2009), 576-586. DOI 10.1016/j.disc.2008.08.019 | MR 2499010
[11] Wang, J. F., Huang, Q. X., Belardo, F., Marzi, E. M. L.: On the spectral characterizations of $\infty$-graphs. Discrete Math. 310 (2010), 1845-1855. DOI 10.1016/j.disc.2010.01.021 | MR 2629903 | Zbl 1231.05174
[12] Wang, W., Xu, C. X.: On the spectral characterization of $T$-shape trees. Linear Algebra Appl. 414 (2006), 492-501. DOI 10.1016/j.laa.2005.10.031 | MR 2214401 | Zbl 1086.05050
[13] Wang, W., Xu, C. X.: Note: The $T$-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006), 78-81. MR 2263111
[14] Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R.: The lollipop graph is determined by its $Q$-spectrum. Discrete Math. 309 (2009), 3364-3369. DOI 10.1016/j.disc.2008.09.052 | MR 2526754 | Zbl 1182.05084
Partner of
EuDML logo