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ON THE SIGNLESS LAPLACIAN SPECTRAL CHARACTERIZATION

OF THE LINE GRAPHS OF T -SHAPE TREES

Guoping Wang, Guangquan Guo, Li Min, Urumqi

(Received November 6, 2012)

Abstract. A graph is determined by its signless Laplacian spectrum if no other non-
isomorphic graph has the same signless Laplacian spectrum (simply G is DQS). Let
T (a, b, c) denote the T -shape tree obtained by identifying the end vertices of three paths
Pa+2, Pb+2 and Pc+2. We prove that its all line graphs L(T (a, b, c)) except L(T (t, t, 2t+1))
(t > 1) are DQS, and determine the graphs which have the same signless Laplacian spec-
trum as L(T (t, t, 2t+ 1)). Let µ1(G) be the maximum signless Laplacian eigenvalue of the
graph G. We give the limit of µ1(L(T (a, b, c))), too.
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1. Introduction

All graphs considered here are undirected and simple. Suppose that G is a graph

with vertex set V = {v1, v2, . . . , vn} and let dG(vi) be the degree of the vertex vi.

Then D(G) = diag(dG(v1), . . . , dG(vn)) is a diagonal matrix of the vertex degrees

of G. If A(G) is the adjacency matrix of G, then the matrix Q(G) = D(G) +

A(G) is the signless Laplacian matrix of G. Since matrices A(G) and Q(G) are

real and symmetric, all their eigenvalues are real numbers. Assume that ̺1(G) >

̺2(G) > . . . > ̺n(G) and µ1(G) > µ2(G) > . . . > µn(G) are, respectively, the

adjacent eigenvalues and the signless Laplacian eigenvalues of the graph G. The

A-spectrum (or Q-spectrum) of the graph G consists of the adjacency eigenvalues

(or signless Laplacian eigenvalues). Two graphs are said to be A-cospectral (or Q-

cospectral) if they have the same A-spectrum (or Q-spectrum). A graph is said to

This work is supported by NSFC Grants No. 11261059 and No. 11461071.
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be determined by its A-spectrum (or Q-spectrum) (simply G is DAS or DQS) if no

other non-isomorphic graph is A-cospectral (or Q-cospectral) to it.

Finding new families of DS graphs is an interesting problem. For the background

and some known results about this problem, we refer the reader to [9], [10] and

the references therein. Let T (a, b, c) denote the T -shape tree on n vertices obtained

by identifying the end vertices of three paths Pa+2, Pb+2 and Pc+2 (see Figure 1).

G.R.Omidi [7] showed that T (a, b, c) is DQS. W.Wang and C.X.Xu in [13] and

[12] proved respectively that T (a, b, c) is DLS and that T (a, b, c) is DAS if and only

if (a + 1, b + 1, c + 1) 6= (l, l, 2l − 2) for any integer l > 2. Let L(T (a, b, c)) be the

line graph of T (a, b, c). D.Cvetković, P.Rowlinson and S.K. Simić [2] verified that if

two graphs are Q-cospectral, then their line graphs are A-cospectral. So from [7] we

know that L(T (a, b, c)) is DAS.

Pa+1

Pb+1

Pc+1 Pa+1

Pb+1

Pc+1

u

v

w

Figure 1. The T -shape tree T (a, b, c) and its line graph L(T (a, b, c)).

In this paper we mainly show that all L(T (a, b, c)) except L(T (t, t, 2t+1)) (t > 1)

are DQS, and determine that Q(2t + 3; t + 1, t) (see Figure 2) is the unique graph

which is Q-cospectral to L(T (t, t, 2t+1)). We give the limit of µ1(L(T (a, b, c))), too.

2. Some lemmas on Q-spectrum

In this section we give some lemmas which are used in the next section to prove

our main results.

Lemma 2.1 ([9]). For the adjacent matrix of a graph, the following data can be

obtained from the spectrum:

(i) the number of vertices;

(ii) the number of edges;

(iii) the number of closed walks of any length.

Lemma 2.2 ([2]). Let G be a connected graph of order n > 2. Then

(i) µ1(G) 6 max{dG(vi) + dG(vj); vivj ∈ E(G)}, with equality if and only if G is

a regular or semi-regular bipartite graph;

(ii) µ1(G) > ∆(G) + 1, with equality if and only if G is the star K1,n−1, where

∆(G) is the maximum degree of the graph G.
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Let NG(H) be the number of subgraphs of a graph G which are isomorphic to H .

Lemma 2.3 ([2]). Let G be a graph with n vertices and m edges, and Tk(G) =
n
∑

i=1

µi(G)k (k = 0, 1, . . .). Then T0(G) = n, T1(G) =
n
∑

i=1

dG(vi) = 2m, T2(G) =

2m+
n
∑

i=1

dG(vi)
2, T3(G) = 6NG(C3) + 3

n
∑

i=1

dG(vi)
2 +

n
∑

i=1

dG(vi)
3.

From the above lemma, we easily obtain

Lemma 2.4. If G and H are Q-cospectral and have the same degree sequences,

then NG(C3) = NH(C3).

Recall that the polynomial φ(G, λ) = det(λI −A(G)) = a0λ
n + a1λ

n−1 + . . .+ an
is the characteristic polynomial of G, where I is the identity matrix.

Lemma 2.5 ([1]). Let v be a vertex of a graph G and let C (v) denote the

collection of cycles containing v. Then the characteristic polynomial of G satisfies

φ(G, λ) = λφ(G − v, λ) −
∑

u∼v

φ(G− u− v, λ) − 2
∑

C∈C (v)

φ(G − V (C), λ).

Lemma 2.6 ([6]). For n > 1 we have φ(Pn, 2) = n + 1, and φ(Cn, 2) = 0 for

n > 3.

Lemma 2.7 ([2]). Let G be a graph. Then the following statements hold:

(i) µ1(G) = 0 if and only if G has no edges;

(ii) 0 < µ1(G) < 4 if and only if all components of G are paths;

(iii) for a connected graph G, µ1(G) = 4 if and only if G is a cycle Cn or K1,3.

Lemma 2.8 ([1]). Let H be a proper subgraph of a connected graph G. Then

µ1(H) < µ1(G).

Lemma 2.9 (Edge-Interlacing [3]). Let G be a graph with order n and e ∈ E(G).

Then 0 6 µn(G− e) 6 µn(G) 6 . . . 6 µ2(G− e) 6 µ2(G) 6 µ1(G− e) 6 µ1(G).

Lemma 2.10 ([2]). If two graphs are Q-cospectral, then their line graphs are

A-cospectral.

Let NG(i) be the number of closed walks of length i in G.
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Lemma 2.11 ([7]). NG(4) = 2m+4NG(P3)+8NG(C4) andNG(5) = 30NG(K3)+

10NG(C5) + 10NG(H1), where H1 is the graph K1,3 with two end vertices joined by

an edge.

3. The line graph of a T -shape tree is a DQS-graph

Suppose without loss of generality that a 6 b 6 c in L(T (a, b, c)). Note that

L(T (0, 0, c)) is isomorphic to the lollipop graph which is obtained by identifying

a vertex of a cycle and an end vertex of a path. In [14], Y.P. Zhang et al. showed

that all lollipop graphs are DQS. So we assume that c > b > 1.

Lemma 3.1. If G and L(T (a, b, c)) (0 6 a 6 b 6 c) are Q-cospectral, then the

following implications hold:

(i) If a = 0, then deg(G) = (32, 2n−4, 12).

(ii) If a > 1, then deg(G) = (33, 2n−6, 13) or (4, 2n−3, 12).

P r o o f. Since G and L(T (a, b, c)) are Q-cospectral, we know by Lemma 2.3

that G and L(T (a, b, c)) have the same order and size and that
n
∑

i=1

dG(vi)
2 =

n
∑

i=1

dL(T (a,b,c))(vi)
2. By Lemma 2.2, we have 4 < µ1(L(T (a, b, c))) < 6, which implies

that ∆(G) 6 4. Let xi be the number of vertices of degree i. Then we know that

0 6 i 6 4. If a > 1, then we have

x0 + x1 + x2 + x3 + x4 = n,

x1 + 2x2 + 3x3 + 4x4 = 2n,

x1 + 4x2 + 9x3 + 16x4 = 4n+ 6.

From these equations we have x0 + x3 + 3x4 = 3 and so x4 ∈ {0, 1}. Next we

distinguish two cases.

Case 1. Suppose that x4 = 0. Then x0 + x3 = 3. The case that x0 > 1 implies

that 0 lies on the Q-spectrum of G. This contradicts the fact that 0 does not lie on

the Q-spectrum of L(T (a, b, c)), and so x0 = 0. Thus we obtain that x3 = 3, x1 = 3

and x2 = n− 6, that is, deg(G) = (33, 2n−6, 13).

Case 2. Suppose that x4 = 1. Then x0 = x3 = 0. From the first two equations,

we obtain x1 = 2, x2 = n− 3. Thus, deg(G) = (4, 2n−3, 12).

If a = 0, then similarly we get that deg(G) = (32, 2n−4, 12). �

Recall that the subdivision graph S(G) of G is obtained from G by replacing each

edge of G with a path of length two. The following result can be found in [5], [11].
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Lemma 3.2. Let G and H be two graphs. Then G and H are Q-cospectral if

and only if S(G) and S(H) are A-cospectral.

From [8], we know that for any n > −2, φ(Pn, λ) = (x2n+2 − 1)/(xn+2 − xn),

where x satisfies x2 − λx+ 1 = 0. Let Q(q; k1, k2) be the unicyclic graph of order n

with the degree sequence (4, 2n−3, 12) shown in Figure 2.

Cq Pk1

Pk2

Figure 2. The unicyclic graph Q(q; k1, k2).

Lemma 3.3. Let x satisfy x2 − λx+ 1 = 0. Then we have

(1) x2n(x2−1)3φ(S(L(T (a, b, c))), λ) = x4a+4b+4c+18−3x4a+4b+4c+16+x4b+4c+14+

x4a+4c+14+x4a+4b+14−x4b+4c+12−x4a+4c+12−x4a+4b+12+2x4b+4c+10+2x4a+4c+10+

2x4a+4b+10 − 2x4c+8 − 2x4b+8 − 2x4a+8 + x4c+6 + x4b+6 + x4a+6 − x4c+4 − x4b+4 −

x4a+4 + 3x2 − 1;

(2) x2n(x2 − 1)3φ(S(Q(q; k1, k2)), λ) = x4k1+4q+4k2+6 − 3x4k1+4q+4k2+4 +

2x4k1+4q+2 − 2x4k1+4k2+2q+6 + 2x4q+4k2+2 + 2x4k1+4k2+2q+4 + x4k1+4k2+6 +

2x4k1+2q+4 + 2x4k2+2q+4 + x4k1+4k2+4 − 2x4k1+2q+2 − 2x4k2+2q+2 − x4q+2 − x4q −

2x2q+2 − 2x4k1+4 + 2x2q − 2x4k2+4 + 3x2 − 1.

P r o o f. By applying Lemma 2.5 to the subdivision graph S(L(T (a, b, c))), we

obtain

φ(S(L(T (a, b, c)))) = λ3φ(P2c)φ(P2a+2b+3)− λ2(φ(P2c)φ(P2b+2)φ(P2a)

+ φ(P2c)φ(P2b)φ(P2a+2)− φ(P2c)φ(P2b)φ(P2a)

+ φ(P2c−1)φ(P2a+2b+3)) + λ(φ(P2c−1)φ(P2b+2)φ(P2a)

+ φ(P2c−1)φ(P2b)φ(P2a+2)− φ(P2c−1)φ(P2b)φ(P2a)

− 2φ(P2c)φ(P2a+2b+3)) + φ(P2c)φ(P2b+2)φ(P2a)

+ φ(P2c)φ(P2b)φ(P2a+2)− 2φ(P2c)φ(P2b)φ(P2a).

By substituting φ(Pn, λ) = (x2n+2 − 1)/(xn+2 − xn) with λ = (x2 + 1)/x in the

above equation, we get the first assertion. The second assertion can be obtained

similarly. �
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Lemma 3.4. Graphs L(T (a, b, c)) and Q(q; k1, k2) are Q-cospectral if and only if

a = b = k2 = t, c = 2t+ 1, k1 = t+ 1, q = 2t+ 3, where t > 1.

P r o o f. From [2] we know that for the Q-spectrum the multiplicity of 0 gives

the number of bipartite components, and so zero does not lie in the Q-spectrum

of L(T (a, b, c)). Therefore, if Q(q; k1, k2) and L(T (a, b, c)) are Q-cospectral then q

is odd. By Lemma 3.2 we also know that S(L(T (a, b, c)) and S(Q(q; k1, k2)) are

A-cospectral. By Lemma 3.3 we obtain that x2n(x2 − 1)3φ(S(L(T (a, b, c))), λ) =

x2n(x2 − 1)3φ(S(Q(q; k1, k2)), λ). We assume without loss of generality that a 6

b 6 c and k1 > k2. Since the coefficients of the third, fourth and fifth terms of

x2n(x2 − 1)3φ(S(Q(q; k1, k2)), λ) are all even, the third and fourth terms of x
2n ×

(x2 − 1)3φ(S(L(T (a, b, c))), λ) are equal, that is a = b. If the third, fourth and fifth

terms of x2n(x2 − 1)3φ(S(Q(q; k1, k2)), λ) are equal, then we have q = 2k1 + 2, a

contradiction. This implies that k1 > k2 and that 4k1 +4q+2 = 4b+4c+14. Thus

we obtain a = k2.

Note that 2x4a+6 and −4x4a+8 are, respectively, the last fourth and fifth terms of

the polynomial obtained by simplifying x2n(x2−1)3φ(S(L(T (a, b, c))), λ) with a = b.

We have that x4a+6 = x2q and −4x4a+8 = −2x4k1+4 − 2x2q+2. Thus we obtain that

a = b = k2 = t, c = 2t+ 1, k1 = t+ 1 and q = 2t+ 3, where t > 1.

Conversely, if a = b = k2 = t, c = 2t+ 1, k1 = t+ 1 and q = 2t+ 3, then we can

easily verify that φ(S(L(T (a, b, c))), λ) = φ(S(Q(q; k1, k2)), λ). �

In order to state the following lemma we need to add some further notation. The

odd-unicyclic graph is a unicyclic graph which contains an odd cycle. A spanning

subgraphH of G is its TU -subgraph if the components ofH are trees or odd-unicyclic

graphs. Suppose that a TU -subgraph H of G contains c unicyclic graphs and trees

T1, T2, . . . , Ts. Then the weightW (H) of H is defined byW (H) = 4c
s
∏

i=1

(1+|E(Ti)|).

Note that isolated vertices in H do not contribute to W (H) and may be ignored.

Recall that the polynomial

ϕ(G) = ϕ(G,µ) = det(µI −Q(G)) = q0µ
n + q1µ

n−1 + . . .+ qn

is the signless Laplacian characteristic polynomial of G. The lemma below shows

the relation between the coefficients of ϕ(G,µ) and the weights of a TU -subgraph

of G.

Lemma 3.5 ([2]). Numbers q0 = 1 and qj =
∑

Hj

(−1)jW (Hj) (j = 1, 2, . . . , n),

where the summation runs over all TU-subgraphs Hj of G with j edges.
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Lemma 3.6. No two non-isomorphic line graphs of T -shape trees are Q-

cospectral.

P r o o f. Suppose that L(T (a, b, c)) and L(T (a1, b1, c1)) are Q-cospectral, where

a 6 b 6 c and a1 6 b1 6 c1. Then we know by Lemma 2.3 that

(1) a+ b+ c = a1 + b1 + c1

and by Lemma 3.2 that S(L(T (a, b, c))) and S(L(T (a1, b1, c1))) are A-cospectral.

By Lemma 3.3, we know that the third smallest exponents of x in x2n(x2 − 1)3 ×

φ(S(L(T (a, b, c))), λ) and x2n(x2 − 1)3φ(S(L(T (a1, b1, c1))), λ) are equal to 4a + 4

and 4a1 + 4, respectively, and so 4a+ 4 = 4a1 + 4, that is,

(2) a = a1.

Using Lemma 3.5 we easily obtain that

qn−1(L(T (a, b, c))) = (−1)n−1(2(a2 + b2 + c2) + 5n− 6)

and

qn−1(L(T (a1, b1, c1))) = (−1)n−1(2(a21 + b21 + c21) + 5n− 6),

from which we obtain that a2 + b2 + c2 = a21 + b21 + c21. The assertion follows from

(1) and (2). �

Lemma 3.7 ([3]). Let G be a graph of order n and size m. Then φ(S(G), µ) =

µm−nϕ(G,µ2).

From Lemmas 3.3 and 3.7 we easily obtain

Lemma 3.8. ϕ(L(T (a, b, c)), 4) 6= 0.

Lemma 3.9. If G and L(T (a, b, c)) are Q-cospectral, then G does not contain

a cycle as its component.

P r o o f. Since G and L(T (a, b, c)) are Q-cospectral, by Lemma 3.8 we have

ϕ(G, 4) 6= 0. If G = G′ ∪ Cl, then ϕ(G,µ) = ϕ(G′, µ) · ϕ(Cl, µ). By Lemma 2.7 (iii)

we get ϕ(G, 4) = 0. This is a contradiction. �
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Lemma 3.10. For any graph L(T (a, b, c)), we have the following assertions:

(i) If a = 0, then µ2(L(T (a, b, c))) < 4.

(ii) If a > 1, then µ3(L(T (a, b, c))) < 4.

P r o o f. Let uv and uw be the edges of L(T (a, b, c)) shown in Figure 1. If a = 0,

then by Lemma 2.9 we have µ2(L(T (0, b, c))) 6 µ1(L(T (0, b, c))− vw) = µ1(Pn) < 4.

If a > 1, then we know by Lemma 2.9 that µ3(L(T (a, b, c))) 6 µ2(L(T (a, b, c))− uv)

and that µ2(L(T (a, b, c))− uv) 6 µ1(L(T (a, b, c))− uv − uw) = µ1(Pn−a−1 ∪ Pa+1).

By Lemma 2.7 (ii) we have µ3(L(T (a, b, c))) < 4. �

Lemma 3.11. If G and L(T (0, b, c)) are Q-cospectral, then G is a connected

graph.

P r o o f. Suppose for a contradiction that G = G1 ∪G2 ∪ . . . ∪Gk, where k > 1

and Gi is a connected component of G. Without loss of generality, set µ1(G) =

µ1(G1). Since G and L(T (0, b, c)) are Q-cospectral, it follows from Lemma 3.10 (i)

that µ2(G) = max{µ2(G1), µ1(Gi) ; 2 6 i 6 k} < 4, and so by Lemma 2.7 we know

that each Gi (2 6 i 6 k) is a path or an isolated vertex. This implies that zero lies

on the Q-spectrum of G, a contradiction. �

Theorem 3.12. L(T (0, b, c)) is DQS.

P r o o f. Suppose that G and L(T (0, b, c)) are Q-cospectral. Then we know by

Lemma 3.1 (i) that the degree sequence of G is (32, 2n−4, 12) and by Lemma 3.11

that G is a connected unicyclic graph. By Lemma 2.4, we have NG(C3) =

NL(T (0,b,c))(C3) = 1. All connected unicyclic graphs Ui (1 6 i 6 2) containing

C3 on n vertices with the degree sequence (32, 2n−4, 12) are shown in Figure 3.

U1

Ps+1

Pr+1

xy

U2

Figure 3.

So G ∼= U1 or U2. If G ∼= U1, then by Lemma 3.6 we have G ∼= L(T (0, b, c)). If G ∼=

U2, then we know by Lemma 2.10 that the line graphs L(G) and L(L(T (a, b, c))) are

A-cospectral, and so it follows from Lemma 2.1 that NL(L(T (a,b,c)))(4) = NL(G)(4).

Using Lemma 2.11, we get

NL(L(T (0,b,c)))(4) =











6n+ 56, if b = c = 1;

6n+ 60, if b = 1, c > 2;

6n+ 64, if 2 6 b 6 c.
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If dU2
(x, y) > 2, then U2 contains one cycle and oneK1,3 and so µ2(U2) > 4, which

contradicts Lemma 3.10 (i). Hence we assume that dU2
(x, y) = 1; then we have

NL(U2)(4) =











6n+ 48, if r = s = 1;

6n+ 52, if r = 1, s > 2;

6n+ 56, if 2 6 r 6 s.

From NL(L(T (0,b,c)))(4) = NL(U2)(4) = 6n + 56 we know that b = c = 1 and

s > r > 2. But n(L(T (0, 1, 1))) = 5 < 8 6 n(U2), a contradiction. �

Lemma 3.13. Suppose that the graph G is Q-cospectral to L(T (a, b, c)) (a > 1).

Then we have

(i) G does not contain a subgraph isomorphic to the disjoint union of two cycles

and one K1,3;

(ii) G does not contain a subgraph isomorphic to the disjoint union of two K1,3 and

one cycle;

(iii) G does not contain a subgraph isomorphic to the disjoint union of three cycles.

P r o o f. Since G and L(T (a, b, c)) are Q-cospectral, we know by Lemma 3.10 (ii)

that µ3(G) < 4. Suppose on the contrary that G contains a subgraph isomorphic

to the disjoint union of two cycles Cl1 and Cl2 and one K1,3. Then we know by

Lemma 2.9 that µ3(G) > µ3 (Cl1 ∪Cl2 ∪K1,3). Since, by Lemma 2.7 (iii), µ1(Cl1) =

µ1(Cl2) = µ1(K1,3) = 4, we have µ3(G) > 4, a contradiction. Similarly, we can verify

that (ii) and (iii) are also true. �

Theorem 3.14. Let a > 1. Then all L(T (a, b, c)) except L(T (a, a, 2a + 1))

are DQS, and Q(2a + 3; a + 1, a) is the unique graph which is Q-cospectral to

L(T (a, a, 2a+ 1)).

P r o o f. Suppose that G and L(T (a, b, c)) are Q-cospectral. Then we know by

Lemma 3.1 (ii) that the degree sequence of G is (4, 2n−3, 12) or (33, 2n−6, 13).

If deg(G) = (4, 2n−3, 12), then by Lemma 3.9, G ∼= Q(q; k1, k2). We know from

Lemma 3.4 that no L(T (a, b, c)) except L(T (a, a, 2a + 1)) can be Q-cospectral to

Q(q; k1, k2).

Now we suppose that deg(G) = (33, 2n−6, 13). If G is connected, then we know by

Lemma 2.4 that G contains one C3. All connected unicyclic graphs Ai (1 6 i 6 3)

containing C3 on n vertices with the degree sequence (33, 2n−6, 13) are shown in

Figure 4.

If G ∼= A3, then by Lemma 3.3 we have A3
∼= L(T (a, b, c)). Next we will discuss

two cases.
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Ps+1

Pr+1

Pt+1

xy

A2 A3A1

Pr+1

Pt+1 Ps+1

xy w

Figure 4.

Case 1. G ∼= A1.

If dA1
(x, y) > 2 and dA1

(x,w) > 3, then A1 always has a subgraph isomorphic

to the disjoint union of two K1,3 and one cycle, which contradicts Lemma 3.13 (i).

Thus we consider the following two subcases.

Subcase 1.1. dA1
(x, y) = 1 and dA1

(x,w) = 1.

By Lemma 2.10, we know that the line graphs L(G) and L(L(T (a, b, c))) are

A-cospectral, and so it follows from Lemma 2.1 that NL(L(T (a,b,c)))(4) = NL(G)(4).

Using Lemma 2.11, we obtain:

NL(L(T (a,b,c)))(4) =























6n+ 90, if a = b = c = 1;

6n+ 94, if a = b = 1, c > 2;

6n+ 98, if a = 1, 2 6 b 6 c;

6n+ 102, if 2 6 a 6 b 6 c.

NL(A1)(4) =























6n+ 70, if t = r = s = 1;

6n+ 74, if t = 1, r = 1, s > 2 or t > 2, r = s = 1;

6n+ 78, if t = 1, 2 6 r 6 s or t > 2, r = 1, s > 2;

6n+ 82, if t > 2, 2 6 r 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(A1)(4), a contradiction.

Subcase 1.2. dA1
(x, y) = 1 and dA1

(x,w) > 2.

NL(A1)(4) =























6n+ 66, if t = r = s = 1;

6n+ 70, if t = 1, r = 1, s > 2 or t > 2, r = s = 1;

6n+ 74, if t = 1, 2 6 r 6 s or t > 2, r = 1, s > 2;

6n+ 78, if t > 2, 2 6 r 6 s.

Clearly, NL(L(Hn
g,k

))(4) 6= NL(B1)(4), a contradiction.

Subcase 1.3. dA1
(x, y) > 2 and dA1

(x,w) = 1.

NL(A1)(4) =























6n+ 66, if t = r = s = 1;

6n+ 70, if t = 1, r = 1, s > 2 or t > 2, r = s = 1;

6n+ 74, if t = 1, 2 6 r 6 s or t > 2, r = 1, s > 2;

6n+ 78, if t > 2, 2 6 r 6 s.
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Clearly, NL(L(Hn
g,k

))(4) 6= NL(B1)(4), a contradiction.

Subcase 1.4. dA1
(x, y) > 2 and dA1

(x,w) = 2.

NL(A1)(4) =























6n+ 62, if t = r = s = 1;

6n+ 66, if t = 1, r = 1, s > 2 or t > 2, r = s = 1;

6n+ 70, if t = 1, 2 6 r 6 s or t > 2, r = 1, s > 2;

6n+ 74, if t > 2, 2 6 r 6 s.

Clearly, NL(L(Hn
g,k

))(4) 6= NL(B1)(4), a contradiction.

Case 2. G ∼= A2.

Subcase 2.1. dA2
(x, y) = 1.

NL(A2)(4) =























6n+ 78, if t = r = s = 1;

6n+ 82, if t = 1, r = 1, s > 2 or t > 2, r = s = 1;

6n+ 86, if t = 1, 2 6 r 6 s or t > 2, r = 1, s > 2;

6n+ 90, if t > 2, 2 6 r 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(A2)(4), a contradiction.

Subcase 2.2. dA2
(x, y) > 2.

NL(A2)(4) =























6n+ 74, if t = r = s = 1;

6n+ 78, if t = 1, r = 1, s > 2 or t > 2, r = s = 1;

6n+ 82, if t = 1, 2 6 r 6 s or t > 2, r = 1, s > 2;

6n+ 86, if t > 2, 2 6 r 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(A2)(4), a contradiction.

Next we suppose that G is not connected. We have known from [2] that for the

Q-spectrum the multiplicity of 0 gives the number of bipartite components. Thus, G

does not contain a bipartite graph as its component. Let U(p1; s, t), Z(p2; s, t) and

H(p3; k) be the three unicyclic graphs shown in Figure 5. Then we can determine by

Lemmas 3.9 and 3.13 (iii) that G ∼= H(p3; k)∪U(p1; s, t) or G ∼= H(p3; k)∪Z(p2; s, t).

Cp1

Ps+1Pt+1

x y

U(p1; s, t)

Cq3

Pk+1

H(p3; k)

Cq2

Ps+1

Pt+1

yx

Z(p2; s, t)

Figure 5. The graphs U(p1; s, t), Z(p2; s, t) and H(p3; k).
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If G ∼= H(p3; k)∪U(p1; s, t), then by Lemma 2.4 we know thatH(p3; k)∪U(p1; s, t)

contains only one C3. Thus we have p1 = 3, p3 > 5 or p1 > 5, p3 = 3. Note that both

p1 and p3 must be odd.

If p1 = 3, p3 > 5, then by Lemma 2.11 we get

NL(H(p3;k)∪U(3;s,t))(4) =























6n+ 74, if k = t = s = 1;

6n+ 78, if k = 1, t = 1, s > 2 or k > 2, t = s = 1;

6n+ 82, if k = 1, 2 6 t 6 s or k > 2, t = 1, s > 2;

6n+ 86, if k > 2, 2 6 t 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(H(p3;k)∪U(p1 ;s,t))(4), a contradiction.

If p1 > 5, p3 = 3 and dU(p1;s,t)(x, y) > 3, then G contains two K1,3 and one cycle.

Thus, we discuss two subcases.

If dU(p1;s,t)(x, y) = 1, then

NL(H(3;k)∪U(p1 ;s,t))(4) =























6n+ 66, if k = t = s = 1;

6n+ 70, if k = 1, t = 1, s > 2 or k > 2, t = s = 1;

6n+ 74, if k = 1, 2 6 t 6 s or k > 2, t = 1, s > 2;

6n+ 78, if k > 2, 2 6 t 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(H(3;k)∪U(p1 ;s,t))(4), a contradiction.

If dU(p1;s,t)(x, y) = 2, then

NL(H(3;k)∪U(p1 ;s,t))(4) =























6n+ 62, if k = t = s = 1;

6n+ 66, if k = 1, t = 1, s > 2 or k > 2, t = s = 1;

6n+ 70, if k = 1, 2 6 t 6 s or k > 2, t = 1, s > 2;

6n+ 74, if k > 2, 2 6 t 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(H(3;k)∪U(p1 ;s,t))(4), a contradiction.

If G ∼= H(p3; k) ∪ Z(p2; s, t), then p2 = 3, p3 > 5 or p3 = 3, p2 > 5. Note that

both p2 and p3 are odd.

If dZ(p2;s,t)(x, y) > 2, then G contains two cycles and one K1,3. Thus, we only

discuss the case that dZ(p2;s,t)(x, y) = 1.

If p2 = 3, p3 > 5, then

NL(H(p3;k)∪Z(3;s,t))(4) =























6n+ 66, if k = t = s = 1;

6n+ 70, if k = 1, t = 1, s > 2 or k > 2, t = s = 1;

6n+ 74, if k = 1, 2 6 t 6 s or k > 2, t = 1, s > 2;

6n+ 78, if k > 2, 2 6 t 6 s.
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Clearly, NL(L(T (a,b,c)))(4) 6= NL(H(p3;k)∪Z(3;s,t))(4), a contradiction.

If p3 = 3, p2 > 5, then

NL(H(3;k)∪Z(p2 ;s,t))(4) =























6n+ 66, if k = t = s = 1;

6n+ 70, if k = 1, t = 1, s > 2 or k > 2, t = s = 1;

6n+ 74, if k = 1, 2 6 t 6 s or k > 2, t = 1, s > 2;

6n+ 78, if k > 2, 2 6 t 6 s.

Clearly, NL(L(T (a,b,c)))(4) 6= NL(H(3;k)∪Z(p2 ;s,t))(4), a contradiction.

So far we have verified that all L(T (a, b, c)) but L(T (a, a, 2a + 1)) (a > 1) are

DQS. Furthermore, by Lemma 3.4 we can determine that Q(2a+ 3; a+ 1, a) is the

unique graph which is Q-cospectral to L(T (a, a, 2a+ 1)). �

An internal path in a graph is a path joining two end vertices which are both

of degree greater than two (not necessarily distinct), while all other vertices are of

degree 2.

Lemma 3.15 ([4]). Let uv be an edge of the connected graph G, and let Guv be

obtained from G by subdividing the edge uv of G.

(i) If uv is not in an internal path of G 6= Cn, then µ1(Guv) > µ1(G).

(ii) If uv belongs to an internal path of G, then µ1(Guv) < µ1(G).

Theorem 3.16. µ1(L(T (a, b, c))) < 16/3.

P r o o f. We know by Lemma 3.15 that µ1(L(T (r, r, r))) is an increasing func-

tion of r and by Lemma 2.2 that µ1(L(T (r, r, r))) < 6. Thus, lim
r→∞

µ1(L(T (r, r, r)))

exists. Let q = lim
r→∞

µ1(L(T (r, r, r))). Suppose that Pr+1 = v1v2 . . . vrvr+1 is a pen-

dant path of L(T (r, r, r)), where v1 is the pendant vertex of L(T (r, r, r)). Let µ =

µ1(L(T (r, r, r))) and let x = (x1, x2, . . . , xn)
T be a Perron vector of Q(L(T (r, r, r))),

where xi corresponds to the vertex vi. From Q(L(T (r, r, r)))x = µx we have

x2 = (µ − 1)x1, x3 = (µ − 2)x2 − x1, . . . , xr+1 = (µ − 2)xr − xr−1. Thus, we

obtain

(1) xr+1 =
(1 + λ2)λ

r+1
1 − (1 + λ1)λ

r+1
2

√

µ2 − 4µ
x1

and

(2) xr =
(1 + λ2)λ

r
1 − (1 + λ1)λ

r
2

√

µ2 − 4µ
x1
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where λ1 = 1
2

(

µ− 2+
√

µ2 − 4µ
)

and λ2 = 1
2

(

µ− 2−
√

µ2 − 4µ
)

. By the symmetry

of the graph L(T (r, r, r)) we have (µ− 3)xr+1 = 2xr+1 + xr and so

(3) µ− 5 =
xr

xr+1
.

Substituting equations (1) and (2) in the equation (3), we get

µ− 5 =
(1 + λ2)λ

r
1 − (1 + λ1)λ

r
2

(1 + λ2)λ
r+1
1 − (1 + λ1)λ

r+1
2

.

By taking r → ∞ in the above equality, we have

q − 5 =
q −

√

q2 − 4q

q +
√

q2 − 4q
.

Thus, we have q = 16/3. By Lemma 2.8, we know that

µ1(L(T (a, b, c))) < µ1(L(T (r, r, r)))

for any positive integer r > c and so µ1(L(T (a, b, c))) < 16/3. �
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