Article
Keywords:
number of spanning trees; asymptotic; prime partition
Summary:
Let $A_n$ $(n \geq 1)$ be the set of all integers $x$ such that there exists a connected graph on $n$ vertices with precisely $x$ spanning trees. It was shown by Sedláček that $|A_n|$ grows faster than the linear function. In this paper, we show that $|A_{n}|$ grows faster than $\sqrt {n} {\rm e}^{({2\pi }/{\sqrt 3})\sqrt {n/\log {n}}}$ by making use of some asymptotic results for prime partitions. The result settles a question posed in J. Sedláček, On the number of spanning trees of finite graphs, Čas. Pěst. Mat., 94 (1969), 217–221.
References:
[1] Azarija, J., Škrekovski, R.:
Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees. Math. Bohem. 121-131 (2013), 138.
MR 3099303 |
Zbl 1289.05043
[2] Flajolet, P., Sedgewick, R.:
Analytic Combinatorics. Cambridge University Press Cambridge (2009).
MR 2483235 |
Zbl 1165.05001
[4] Hardy, G. H., Ramanujan, S.:
Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17 (1917), 75-115.
MR 1575586
[6] Sedláček, J.:
On the number of spanning trees of finite graphs. Čas. Pěst. Mat. 94 (1969), 217-221.
MR 0250931 |
Zbl 0175.20902
[8] Sedláček, J.:
Regular graphs and their spanning trees. Čas. Pěst. Mat. 95 (1970), 402-426.
MR 0282876 |
Zbl 0201.56902