Previous |  Up |  Next

Article

Keywords:
ortholattice; orthomodular lattice; antitone involution; principal filter; basic algebra
Summary:
We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.
References:
[1] Beran, L.: Orthomodular Lattices – Algebraic Approach. Academia & D. Reidel Publ. Comp, Praha & Dordrecht, 1984. MR 0785005
[2] Chajda, I.: Basic algebras and their applications, an overview. In: Proc. of the Salzburg Conference AAA81, Contributions to General Algebra 20, Verlag J. Heyn, Klagenfurt, 2011, 1–10. MR 2908429
[3] Chajda, I.: Horizontal sums of basic algebras. Discuss. Math., General Algebra Appl. 29 (2009), 21–33. DOI 10.7151/dmgaa.1149 | MR 2598600 | Zbl 1194.06005
[4] Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71 (2005), 19–33. MR 2160352 | Zbl 1099.06006
[5] Chajda, I., Halaš, R., Kühr, J.: Many-valued quantum algebras. Algebra Universalis 60 (2009), 63–90. DOI 10.1007/s00012-008-2086-9 | MR 2480632 | Zbl 1219.06013
[6] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo, Germany, 2007. MR 2326262 | Zbl 1117.06001
[7] Kalmbach, G.: Orthomodular Lattices. Academic Press, London–New York, 1983. MR 0716496 | Zbl 0528.06012
Partner of
EuDML logo