Article
Keywords:
ortholattice; orthomodular lattice; antitone involution; principal filter; basic algebra
Summary:
We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.
References:
[1] Beran, L.:
Orthomodular Lattices – Algebraic Approach. Academia & D. Reidel Publ. Comp, Praha & Dordrecht, 1984.
MR 0785005
[2] Chajda, I.:
Basic algebras and their applications, an overview. In: Proc. of the Salzburg Conference AAA81, Contributions to General Algebra 20, Verlag J. Heyn, Klagenfurt, 2011, 1–10.
MR 2908429
[4] Chajda, I., Halaš, R., Kühr, J.:
Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71 (2005), 19–33.
MR 2160352 |
Zbl 1099.06006
[6] Chajda, I., Halaš, R., Kühr, J.:
Semilattice Structures. Heldermann Verlag, Lemgo, Germany, 2007.
MR 2326262 |
Zbl 1117.06001