[1] Abbas, S., Baleanu, D., Benchohra, M.:
Global attractivity for fractional order delay partial integro-differential equations. Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online.
DOI 10.1186/1687-1847-2012-62 |
MR 2958362 |
Zbl 1302.35392
[2] Abbas, S., Benchohra, M.:
Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604.
MR 2561676 |
Zbl 1219.35345
[3] Abbas, S., Benchohra, M.:
Fractional order partial hyperbolic differential equations involving Caputo’s derivative. Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479.
MR 3034096 |
Zbl 1289.26008
[4] Abbas, S., Benchohra, M.:
Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations. Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18.
MR 3058869 |
Zbl 1302.35393
[5] Abbas, S., Benchohra, M., Cabada, A.:
Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Prob. 2012, 128 (2012), 1–15.
MR 3016041 |
Zbl 1278.26006
[6] Abbas, S., Benchohra, M., Górniewicz, L.:
Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. e-2010 (2010), 271–282, online.
MR 2666846 |
Zbl 1200.26004
[7] Abbas, S., Benchohra, M., Henderson, J.:
Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Studies 20, 1 (2013), 1–10.
MR 3058403 |
Zbl 1305.45005
[8] Abbas, S., Benchohra, M., N’Guérékata, G. M.:
Topics in Fractional Differential Equations. Developments in Mathematics 27, Springer, New York, 2012.
MR 2962045 |
Zbl 1273.35001
[10] Abbas, S., Benchohra, M., Zhou, Y.:
Darboux problem for tractional order neutral functional partial hyperbolic differential equations. Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312.
MR 2583101
[11] Ahmad, B., Nieto, J. J.:
Riemann-Liouville fractional differential equations with fractional boundary conditions. Fixed Point Theory 13 (2012), 329–336.
MR 3024321 |
Zbl 1315.34006
[12] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.:
Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012.
MR 2894576 |
Zbl 1248.26011
[13] Benchohra, M., Graef, J. R., Hamani, S.:
Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87, 7 (2008), 851–863.
DOI 10.1080/00036810802307579 |
MR 2458962
[14] Bota-Boriceanu, M. F., Petrusel, A.:
Ulam–Hyers stability for operatorial equations and inclusions. Analele Univ. I. Cuza Iasi 57 (2011), 65–74.
MR 2933569
[17] Henry, D.: Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin–New York, 1989.
[18] Hilfer, R., R.:
Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
MR 1890104 |
Zbl 0998.26002
[20] Hyers, D. H., Isac, G., Rassias, Th. M.:
Stability of Functional Equations in Several Variables. Birkhäuser, Basel, 1998.
MR 1639801 |
Zbl 0907.39025
[21] Jung, S.-M.:
Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York, 2011.
MR 2790773 |
Zbl 1221.39038
[22] Jung, S.-M.:
A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9.
MR 2318689 |
Zbl 1155.45005
[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.:
Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.
MR 2218073 |
Zbl 1092.45003
[26] Petru, T. P., Bota, M.-F.:
Ulam-Hyers stabillity of operational inclusions in complete gauge spaces. Fixed Point Theory 13 (2012), 641–650.
MR 3024346
[27] Petru, T. P., Petrusel, A., Yao, J.-C.:
Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwanese J. Math. 15 (2011), 2169–2193.
MR 2880400 |
Zbl 1246.54049
[30] Rus, I. A.:
Ulam stability of ordinary differential equations. Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133.
MR 2602351 |
Zbl 1224.34165
[31] Rus, I. A.:
Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10 (2009), 305–320.
MR 2569004 |
Zbl 1204.47071
[33] Tarasov, V. E.:
Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010.
MR 2796453 |
Zbl 1214.81004
[34] Ulam, S. M.:
A Collection of Mathematical Problems. Interscience Publishers, New York, 1968.
MR 0120127
[35] Vityuk, A. N., Golushkov, A. V.:
Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 3 (2004), 318–325.
DOI 10.1007/s11072-005-0015-9 |
MR 2151816
[37] Wang, J., Fečkan, M., Zhou, Y:
On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361.
MR 2901608 |
Zbl 1264.34014
[38] Wang, J., Lv, L., Zhou, Y.:
Ulam stability and data dependence for fractional differential equations with Caputo derivative. E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10.
DOI 10.14232/ejqtde.2011.1.63 |
MR 2832769