[1] Bellman, R., Cooke, K. L.:
Differential-Difference Equations. Mathematics in Science and Engineering 6 Academic Press, New York (1963).
MR 0147745 |
Zbl 0105.06402
[2] Gamliel, D., Levanon, H.: Stochastic Processes in Magnetic Resonance. World Scientific, Singapore (1995).
[3] Gamliel, D.:
Generalized exchange in magnetic resonance. Funct. Differ. Equ. 18 (2011), 201-227.
MR 3308424
[4] Gamliel, D.:
Using the Lambert function in an exchange process with a time delay. Electron. J. Qual. Theory Differ. Equ. Proc. 9th Coll. QTDE 7 (2012), 1-12.
MR 3338526
[5] Gamliel, D., Domoshnitsky, A., Shklyar, R.:
Time evolution of spin exchange with a time delay. Funct. Differ. Equ. 20 (2013), 81-113.
MR 3328887
[6] Hadley, G.:
Linear Algebra. Addison-Wesley Series in Industrial Management Addison Wesley Publishing Company, Reading (1961).
MR 0121368 |
Zbl 0108.01103
[7] Horn, R. A., Johnson, C. R.:
Matrix Analysis. (2nd ed.), Cambridge University Press, Cambridge (2013).
MR 2978290 |
Zbl 1267.15001
[8] Kaplan, J. I., Fraenkel, G.: NMR of Chemically Exchanging Systems. Academic Press, New York (1980).
[10] Vyhlídal, T., Zítek, P.:
Mapping based algorithm for large scale computation of quasi-polynomial zeros. IEEE Trans. Autom. Control 54 (2009), 171-177.
DOI 10.1109/TAC.2008.2008345 |
MR 2478083
[11] Woessner, D. E., Zhang, S., Merritt, M. E., Sherry, A. D.:
Numerical solutions of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Mag. Reson. Med. 53 (2005), 790-799.
DOI 10.1002/mrm.20408