Article
Keywords:
Emden-Fowler equation; group invariant solution; least energy solution; positive solution; variational method
Summary:
We study the existence of positive solutions for the $p$-Laplace Emden-Fowler equation. Let $H$ and $G$ be closed subgroups of the orthogonal group $O(N)$ such that $H \varsubsetneq G \subset O(N)$. We denote the orbit of $G$ through $x\in \mathbb {R}^N$ by $G(x)$, i.e., $G(x):=\{gx\colon g\in G \}$. We prove that if $H(x)\varsubsetneq G(x)$ for all $x\in \overline {\Omega }$ and the first eigenvalue of the $p$-Laplacian is large enough, then no $H$ invariant least energy solution is $G$ invariant. Here an $H$ invariant least energy solution means a solution which achieves the minimum of the Rayleigh quotient among all $H$ invariant functions. Therefore there exists an $H$ invariant $G$ non-invariant positive solution.
References:
[2] Borel, A.:
Le plan projectif des octaves et les sphères comme espaces homogènes. French C. R. Acad. Sci., Paris 230 (1950), 1378-1380.
MR 0034768 |
Zbl 0041.52203
[4] Kajikiya, R.: Multiple positive solutions of the Emden-Fowler equation in hollow thin symmetric domains. Calc. Var. Partial Differ. Equ (to appear).
[5] Kajikiya, R.:
Partially symmetric solutions of the generalized Hénon equation in symmetric domains. Topol. Methods Nonlinear Anal (to appear).
MR 1980135
[7] Lindqvist, P.:
On the equation $ div (|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u =0$. Proc. Am. Math. Soc. 109 (1990), 157-164.
MR 1007505
[9] Pontryagin, L. S.:
Topological Groups. Transl. from the Russian, (3rd ed.), Classics of Soviet Mathematics Gordon and Breach, New York (1986).
MR 0898007 |
Zbl 0882.01025