Previous |  Up |  Next

Article

Keywords:
comparative probability; comparative plausibilities; hyperreal field; representability by nonstandard measures
Summary:
Axioms are given for positive comparative probabilities and plausibilities defined either on Boolean algebras or on arbitrary sets of events. These axioms allow to characterize binary relations representable by either standard or nonstandard measures (i. e. taking values either on the real field or on a hyperreal field). We also study relations between conditional events induced by preferences on conditional acts.
References:
[1] Yaghlane, B. Ben, Smets, P., Mellouli, K.: About conditional belief function independence. Lect. Notes in Comput. Sci. 2143 (2001), 340-349. DOI 10.1007/3-540-44652-4_30 | MR 1909832
[2] Bernardi, S., Coletti, G.: A Rational conditional utility model in a coherent framework. Lect. Notes in Comput. Sci. 2143 (2001), 108-119. DOI 10.1007/3-540-44652-4_11 | Zbl 1001.68531
[3] Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty. Econometrica 59 (1991), 1, 61-79. DOI 10.2307/2938240 | MR 1085584 | Zbl 0732.90005
[4] Capotorti, A., Coletti, G., Vantaggi, B.: Non-additive ordinal relations representable by lower or upper probabilities. Kybernetika 34 (1998), 10, 79-90. MR 1619057 | Zbl 1274.68518
[5] Capotorti, A., Coletti, G., Vantaggi, B.: Preferences representable by a lower expectation: some characterizations. Theory and Decision 64 (2008), 119-146. DOI 10.1007/s11238-007-9052-4 | MR 2399934 | Zbl 1136.91392
[6] Chateauneuf, A., Jaffray, J. Y.: Archimedean qualitative probabilities. J. Math. Psychol. 28 (1984), 191-204. DOI 10.1016/0022-2496(84)90026-9 | MR 0763783 | Zbl 0558.60003
[7] Coletti, G.: Coherent qualitative probability. J. Math. Psychol. 34 (1990), 297-310. DOI 10.1016/0022-2496(90)90034-7 | MR 1068441 | Zbl 0713.60003
[8] Coletti, G.: Coherent numerical and ordinal probabilistic assessments. IEEE Tras. Systems, Man, and Cybernetics 24 (1994), 12, 1747-1754. DOI 10.1109/21.328932 | MR 1302033
[9] Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions. In: Proc. 7th Workshop on Uncertainty Processing (WUPES), 2006.
[10] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs. Internat. J. of Intelligent Systems 21 (2006), 229-259. DOI 10.1002/int.20133 | Zbl 1160.68582
[11] Coletti, G., Scozzafava, R., Vantaggi, B.: Integrated likelihood in a finitely additive setting. Lect. Notes in Computer Science LNAI 5590 (2009), 554-565. DOI 10.1007/978-3-642-02906-6_48 | MR 2893315 | Zbl 1245.62012
[12] Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events. Theory and Decision 60 (2006), 137-174. DOI 10.1007/s11238-005-4570-4 | MR 2226911 | Zbl 1119.91029
[13] Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations. Internat. J. Approximate Reasoning 60 (2006), 137-174. MR 2226911 | Zbl 1184.68500
[14] Coletti, G., Vantaggi, B.: Conditional not-additive measures and fuzzy sets. In: Proc. ISIPTA 2013, pp. 67-76.
[15] Finetti, B. de: Sul significato soggettivo delle probabilità. Fundam. Mat. 17 (1931), 293-329.
[16] Finetti, B. de: La prevision: Ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré, Section B 7 (1937), l-68. Zbl 0017.07602
[17] Finetti, B. de: Teoria della Probabilità. Einaudi, Torino 1970 (Engl. transl.) Theory of Probability, Wiley and Sons, London 1974.
[18] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 (1967), 325-339. DOI 10.1214/aoms/1177698950 | MR 0207001 | Zbl 0168.17501
[19] Dempster, A. P.: A generalization of Bayesian inference. The Royal Stat. Soc. B 50 (1968), 205-247. MR 0238428 | Zbl 0169.21301
[20] Denoeux, T., Smets, P.: classification using belief functions: The relationship between the case-based and model-based approaches. IEEE Trans. on Systems, Man and Cybernetics B 36 (2006), 6, 1395-1406. DOI 10.1109/TSMCB.2006.877795
[21] Dubins, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration. Ann. Probab. 3 (1975), 89-99. DOI 10.1214/aop/1176996451 | MR 0358891
[22] Dubois, D., Fargier, H., Vantaggi, B.: An axiomatization of conditional possibilistic preference functionals. Lect. Notes LNAI 4724 (2007), 803-815. Zbl 1148.68511
[23] Fenchel, W.: Convex Cones Sets and Functions. Lectures at Princeton University, Princeton 1951. Zbl 0053.12203
[24] Fagin, R., Halpern, J. Y., Megido, N.: A logic for reasoning about probabilities. Information and Computation 87 (1990), 78-128. DOI 10.1016/0890-5401(90)90060-U | MR 1055950
[25] Halpern, J .Y.: Lexicographic probability, conditional probability, and nonstandard probability. Games and Economic Behavior 68 (2010), 1, 155-179. DOI 10.1016/j.geb.2009.03.013 | MR 2577384 | Zbl 1208.60005
[26] Ghirardato, P.: Revisiting savage in a conditional world. Economic Theory 20 (2002), 83-92. DOI 10.1007/s001990100188 | MR 1920674 | Zbl 1030.91017
[27] Holzer, S.: On coherence and conditional prevision. Bollettino UMI, Serie VI-C IV (1985), 1, 441-460. MR 0805231 | Zbl 0584.60001
[28] Jaffray, J. Y.: Bayesian updating and belief functions. IEEE Trans. on Systems, Man, and Cybernetics 22 (1992), 1144-1152. DOI 10.1109/21.179852 | MR 1202571 | Zbl 0769.62001
[29] Koopman, B. O.: The axioms and algebra of intuitive probability. Ann. Math. 41 (1940), 269-292. DOI 10.2307/1969003 | MR 0001474 | Zbl 0024.05001
[30] Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets. Ann. Math. Statist. 30 (1959), 408-419. DOI 10.1214/aoms/1177706260 | MR 0102850 | Zbl 0173.19606
[31] Krauss, P. H.: Representation of conditional probability measures on Boolean algebras. Acta Mathematica Academiae Sceintiarum Hungaricae 19 (1068), 3-4, 229-241. MR 0236080 | Zbl 0174.49001
[32] Lehmann, D.: Generalized qualitative probability: Savage revisited. In: Proc. UAI'96, pp. 381-388. MR 1617222
[33] Narens, L.: Minimal conditions for additive conjoint measurement and qualitative probability. J. Math. Psychol. 11 (1974), 404-430. DOI 10.1016/0022-2496(74)90030-3 | MR 0363541 | Zbl 0307.02038
[34] Paris, J.: A note on the Dutch Book method. In: Proc. Second International Symposium on Imprecise Probabilities and their Applications (G. De Cooman, T. Fine, and T. Seidenfeld, eds.), ISIPTA 2001, Shaker Publishing Company, Ithaca, pp. 301-306.
[35] Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures. Theor. Probab. Appl. 1 (1956), 61-71. DOI 10.1137/1101005 | MR 0085639 | Zbl 0073.12302
[36] Regazzini, E.: Finitely additive conditional probabilities. Rendiconti Sem. Mat. Fis. Milano 55 (1985), 69-89. DOI 10.1007/BF02924866 | MR 0933711 | Zbl 0683.60005
[37] Regoli, G.: Rational comparisons and numerical representation. In: Decision Theory and Decision Analysis: Trends and Challenges, Academic Press, New York 1994.
[38] Robinson, A.: Non-Standard Analysis. North Holland, Amsterdam 1966. MR 0205854 | Zbl 0843.26012
[39] Savage, L. J.: The Foundations of Statistics. Wiley, New York 1954. MR 0063582 | Zbl 0276.62006
[40] Shafer, G.: Allocations of probability. Ann. Probab. 7 (1979), 827-839. DOI 10.1214/aop/1176994941 | MR 0542132 | Zbl 0414.60002
[41] Vantaggi, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions. Math. Soc. Sci. 60 (2010), 104-112. DOI 10.1016/j.mathsocsci.2010.06.002 | MR 2663973 | Zbl 1232.91160
[42] Walley, P.: Belief function representations of statistical evidence. Ann. Statist. 4 (1987), 1439-1465. DOI 10.1214/aos/1176350603 | MR 0913567 | Zbl 0645.62003
[43] Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991. MR 1145491 | Zbl 0732.62004
[44] Williams, P. M.: Notes on Conditional Previsions. Working Paper School of Mathematical and Physical Sciences, The University of Sussex, 1975. MR 2295423 | Zbl 1114.60005
[45] Wong, S. K. M., Tao, Y. Y., Bollmann, P., Burger, H. C.: Axiomatization of qualitative belief structure. IEEE Trans. Systems, Man, and Cybernet. 21 (1991), 726-734. DOI 10.1109/21.108290 | MR 1143669
Partner of
EuDML logo