Previous |  Up |  Next

Article

Keywords:
uncertain reasoning; discrete probability function; social inference process; maximum entropy; Kullback–Leibler; irrelevant information principle
Summary:
Within the framework of discrete probabilistic uncertain reasoning a large literature exists justifying the maximum entropy inference process, $\operatorname{\mathbf{ME}}$, as being optimal in the context of a single agent whose subjective probabilistic knowledge base is consistent. In particular Paris and Vencovská completely characterised the $\operatorname{\mathbf{ME}}$ inference process by means of an attractive set of axioms which an inference process should satisfy. More recently the second author extended the Paris-Vencovská axiomatic approach to inference processes in the context of several agents whose subjective probabilistic knowledge bases, while individually consistent, may be collectively inconsistent. In particular he defined a natural multi-agent extension of the inference process $\operatorname{\mathbf{ME}}$ called the social entropy process, $\operatorname{\mathbf{SEP}}$. However, while $\operatorname{\mathbf{SEP}}$ has been shown to possess many attractive properties, those which are known are almost certainly insufficient to uniquely characterise it. It is therefore of particular interest to study those Paris-Vencovská principles valid for $\operatorname{\mathbf{ME}}$ whose immediate generalisations to the multi-agent case are not satisfied by $\operatorname{\mathbf{SEP}}$. One of these principles is the Irrelevant Information Principle, a powerful and appealing principle which very few inference processes satisfy even in the single agent context. In this paper we will investigate whether $\operatorname{\mathbf{SEP}}$ can satisfy an interesting modified generalisation of this principle.
References:
[1] Adamčík, M., Wilmers, G. M.: Probabilistic merging operators. Logique et Analyse (2013), to appear.
[2] Carnap, R.: On the application of inductive logic. Philosophy and Phenomenological Research 8 (1947), 133-148. DOI 10.2307/2102920 | MR 0023216
[3] French, S.: Group consensus probability distributions: A critical survey. In: Bayesian Statistics (J. M. Bernardo, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, eds.), Elsevier, North Holland 1985, pp. 183-201. MR 0862490 | Zbl 0671.62010
[4] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge University Press, 1934. Zbl 0634.26008
[5] Hawes, P.: An Investigation of Properties of Some Inference Processes. Ph.D. Thesis, The University of Manchester, Manchester 2007.
[6] Jaynes, E. T.: Where do we stand on maximum entropy?. In: The Maximum Entropy Formalism (R. D. Levine and M. Tribus, eds.), M.I.T. Press, Cambridge 1979. MR 0521743
[7] Kern-Isberner, G., Rödder, W.: Belief revision and information fusion on optimum entropy. Internat. J. of Intelligent Systems 19 (2004), 837-857. DOI 10.1002/int.20027 | Zbl 1101.68944
[8] Kracík, J.: Cooperation Methods in Bayesian Decision Making with Multiple Participants. Ph.D. Thesis, Czech Technical University, Prague 2009.
[9] Matúš, F.: On Iterated Averages of $I$-projections. Universität Bielefeld, Germany 2007.
[10] Osherson, D., Vardi, M.: Aggregating disparate estimates of chance. Games and Economic Behavior 56 (2006), 1, 148-173. DOI 10.1016/j.geb.2006.04.001 | MR 2235941 | Zbl 1127.62129
[11] Paris, J. B.: The Uncertain Reasoner's Companion. Cambridge University Press, Cambridge 1994. MR 1314199 | Zbl 0838.68104
[12] Paris, J. B., Vencovská, A.: On the applicability of maximum entropy to inexact reasoning. Internat. J. of Approximate Reasoning 3 (1989), 1-34. DOI 10.1016/0888-613X(89)90012-1 | MR 0975613 | Zbl 0665.68079
[13] Paris, J. B., Vencovská, A.: A note on the inevitability of maximum entropy. Internat. J. of Approximate Reasoning 4 (1990), 183-224. DOI 10.1016/0888-613X(90)90020-3 | MR 1051032
[14] Predd, J. B., Osherson, D. N., Kulkarni, S. R., Poor, H. V.: Aggregating probabilistic forecasts from incoherent and abstaining experts. Decision Analysis 5 (2008), 4, 177-189. DOI 10.1287/deca.1080.0119
[15] Shore, J. E., Johnson, R. W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inform. Theory 26 (1980), 1, 26-37. DOI 10.1109/TIT.1980.1056144 | MR 0560389 | Zbl 0532.94004
[16] Vomlel, J.: Methods of Probabilistic Knowledge Integration. Ph.D. Thesis, Czech Technical University, Prague 1999.
[17] Wilmers, G. M.: The social entropy process: Axiomatising the aggregation of probabilistic beliefs. In: Probability, Uncertainty and Rationality (H. Hosni and F. Montagna, eds.), 10 CRM series, Scuola Normale Superiore, Pisa 2010, pp. 87-104. MR 2731977 | Zbl 1206.03025
[18] Wilmers, G. M.: Generalising the Maximum Entropy Inference Process to the Aggregation of Probabilistic Beliefs. available from http://manchester.academia.edu/GeorgeWilmers/Papers
Partner of
EuDML logo