[1] Aziz-Alaoui, M. A., Okiye, M. Daher:
Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16 (2003), 1069-1075.
DOI 10.1016/S0893-9659(03)90096-6 |
MR 2013074
[3] Ko, W., Ryu, K.:
Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equations 231 (2006), 534-550.
DOI 10.1016/j.jde.2006.08.001 |
MR 2287896
[4] Lindström, T.:
Global stability of a model for competing predators: An extension of the Ardito & Ricciardi Lyapunov function. Nonlinear Anal., Theory Methods Appl. 39 (2000), 793-805.
MR 1733130 |
Zbl 0945.34037
[5] Murray, J. D.:
Mathematical Biology, Vol. 1: An Introduction. 3rd ed. Interdisciplinary Applied Mathematics 17 Springer, New York (2002).
MR 1908418 |
Zbl 1006.92001
[6] Murray, J. D.:
Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications. 3rd revised ed. Interdisciplinary Applied Mathematics 18 Springer, New York (2003).
MR 1952568 |
Zbl 1006.92002
[7] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.:
Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal., Real World Appl. 7 (2006), 1104-1118.
MR 2260902 |
Zbl 1104.92065
[11] Upadhyay, R. K., Iyengar, S. R. K.:
Effect of seasonality on the dynamics of 2 and 3 species prey-predator systems. Nonlinear Anal., Real World Appl. 6 (2005), 509-530.
MR 2129561 |
Zbl 1072.92058