Previous |  Up |  Next

Article

Keywords:
delayed diffusive predator-prey model; modified Leslie-Gower scheme; Holling-type II scheme; persistence; stability; eigenvalue; monotonous iterative sequence
Summary:
A diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes is considered. Local stability for each constant steady state is studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions for global stability are obtained by virtue of the stability of the related FDE and some monotonous iterative sequences. Numerical simulations and reasonable biological explanations are carried out to illustrate the main results and the justification of the model.
References:
[1] Aziz-Alaoui, M. A., Okiye, M. Daher: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16 (2003), 1069-1075. DOI 10.1016/S0893-9659(03)90096-6 | MR 2013074
[2] Chen, B., Wang, M.: Qualitative analysis for a diffusive predator-prey model. Comput. Math. Appl. 55 (2008), 339-355. DOI 10.1016/j.camwa.2007.03.020 | MR 2384151 | Zbl 1155.35390
[3] Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equations 231 (2006), 534-550. DOI 10.1016/j.jde.2006.08.001 | MR 2287896
[4] Lindström, T.: Global stability of a model for competing predators: An extension of the Ardito & Ricciardi Lyapunov function. Nonlinear Anal., Theory Methods Appl. 39 (2000), 793-805. MR 1733130 | Zbl 0945.34037
[5] Murray, J. D.: Mathematical Biology, Vol. 1: An Introduction. 3rd ed. Interdisciplinary Applied Mathematics 17 Springer, New York (2002). MR 1908418 | Zbl 1006.92001
[6] Murray, J. D.: Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications. 3rd revised ed. Interdisciplinary Applied Mathematics 18 Springer, New York (2003). MR 1952568 | Zbl 1006.92002
[7] Nindjin, A. F., Aziz-Alaoui, M. A., Cadivel, M.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal., Real World Appl. 7 (2006), 1104-1118. MR 2260902 | Zbl 1104.92065
[8] Pao, C. V.: Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl. 198 (1996), 751-779. DOI 10.1006/jmaa.1996.0111 | MR 1377823 | Zbl 0860.35138
[9] Ryu, K., Ahn, I.: Positive solutions for ratio-dependent predator-prey interaction systems. J. Differ. Equations 218 (2005), 117-135. DOI 10.1016/j.jde.2005.06.020 | MR 2174969
[10] Tian, Y., Weng, P.: Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes. Acta Appl. Math. 114 (2011), 173-192. DOI 10.1007/s10440-011-9607-9 | MR 2794080 | Zbl 1216.35159
[11] Upadhyay, R. K., Iyengar, S. R. K.: Effect of seasonality on the dynamics of 2 and 3 species prey-predator systems. Nonlinear Anal., Real World Appl. 6 (2005), 509-530. MR 2129561 | Zbl 1072.92058
[12] Wang, Y.-M.: Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays. J. Math. Anal. Appl. 328 (2007), 137-150. DOI 10.1016/j.jmaa.2006.05.020 | MR 2285539 | Zbl 1112.35106
[13] Wang, W., Takeuchi, Y., Saito, Y., Nakaoka, S.: Prey-predator system with parental care for predators. J. Theoret. Biol. 241 (2006), 451-458. DOI 10.1016/j.jtbi.2005.12.008 | MR 2254918
[14] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences 119 Springer, New York (1996). DOI 10.1007/978-1-4612-4050-1 | Zbl 0870.35116
Partner of
EuDML logo