[1] Aassila, M., Benaissa, A.:
Global existence and asymptotic behavior of solutions of mildly degenerate Kirchhoff equations with nonlinear dissipative term. Funkc. Ekvacioj, Ser. Int. 44 (2001), 309-333 French.
MR 1865394 |
Zbl 1145.35432
[2] Autuori, G., Pucci, P.:
Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces. Complex Var. Elliptic Equ. 56 (2011), 715-753.
MR 2832211 |
Zbl 1230.35018
[7] Gorain, G. C.:
Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in $R^n$. J. Math. Anal. Appl. 319 (2006), 635-650.
DOI 10.1016/j.jmaa.2005.06.031 |
MR 2227928
[9] Komornik, V., Zuazua, E.:
A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl., IX. Sér. 69 (1990), 33-54.
MR 1054123 |
Zbl 0636.93064
[12] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.:
Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991).
MR 1190927 |
Zbl 0744.26011
[13] Nandi, P. K., Gorain, G. C., Kar, S.:
Uniform exponential stabilization for flexural vibrations of a solar panel. Appl. Math. (Irvine) 2 (2011), 661-665.
DOI 10.4236/am.2011.26087 |
MR 2910175
[15] Nayfeh, A. H., Mook, D. T.:
Nonlinear Oscillations. Pure and Applied Mathematics. A Wiley-Interscience Publication John Wiley & Sons, New York (1979).
MR 0549322 |
Zbl 0418.70001
[18] Nishihara, K., Yamada, Y.:
On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms. Funkc. Ekvacioj, Ser. Int. 33 (1990), 151-159.
MR 1065473 |
Zbl 0715.35053
[20] Ono, K., Nishihara, K.:
On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation. Adv. Math. Sci. Appl. 5 (1995), 457-476.
MR 1361000 |
Zbl 0842.45005
[24] Ye, Y.:
On the exponential decay of solutions for some Kirchhoff-type modelling equations with strong dissipation. Applied Mathematics 1 (2010), 529-533.
DOI 10.4236/am.2010.16070