Previous |  Up |  Next

Article

Keywords:
four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade
Summary:
In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
References:
[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465-1466. DOI 10.1142/S0218127499001024 | MR 1729683 | Zbl 0962.37013
[2] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory, Second edition. Springer-Verlag, New York 1998. MR 1711790
[3] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[4] Lü, J. H., Chen, G. R.: A new chaotic attractor conined. Internat. J. Bifur. Chaos 12 (2002), 659-661. DOI 10.1142/S0218127402004620 | MR 1894886
[5] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system. Internat. J. Bifur. Chaos 14 (2004), 1507-1537. DOI 10.1142/S021812740401014X | MR 2072347 | Zbl 1129.37323
[6] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. DOI 10.1016/j.automatica.2004.06.001 | MR 2155461 | Zbl 1162.93353
[7] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. DOI 10.1109/TCSI.2005.854412
[8] Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C.: Local bifurcations of the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2257-2270. DOI 10.1142/S0218127402005819 | MR 1941281
[9] Mello, L. F., Coelho, S. F.: Degenerate Hopf bifurcations in the L$\ddot{u}$ system. Phys. Lett. A 373 (2009), 1116-1120. DOI 10.1016/j.physleta.2009.01.049 | MR 2489562
[10] Messias, M., Braga, D. C., Mello, L. F.: Degenerate Hopf bifurcaton in Chua's system. Internat. J. Bifur. Chaos 19 (2009), 497-515. DOI 10.1142/S0218127409023159 | MR 2510108
[11] Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Soliton Fract. 38 (2008), 705-721. MR 2423359 | Zbl 1146.37332
[12] Rössler, O. E.: An equation for continuious chaos. Phys. Lett. A 57 (1976), 397-398. DOI 10.1016/0375-9601(76)90101-8
[13] Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z.Naturfosch. A 36 (1981), 80-112. MR 0604920
[14] Sotomayor, S., Mello, L. F., Braga, D. C.: Bifurcation analysis of the Watt governor system. Comm. Appl. Math. 26(2007), 19-44. MR 2320256 | Zbl 1182.70038
[15] Sotomayor, S., Mello, L. F., Braga, D. C.: Lyapunov coefficients for degenerate Hopf bifurcations. arXiv:0709.3949v1 [math.DS], http://arxiv.org/
[16] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. DOI 10.1103/PhysRevE.50.R647 | MR 1381868
[17] Sprott, J. C.: A new class of chaotic circuit. Phys. Lett. A 266 (2000), 19-23. DOI 10.1016/S0375-9601(00)00026-8
[18] Sprott, J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271-274. DOI 10.1016/S0375-9601(97)00088-1 | MR 1442639 | Zbl 1043.37504
[19] Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J.: Bifurcation analysis of the Qi 3-D four-wing chaotic system. Acta Phys. Pol. B 41 (2010), 767-778.
[20] Schrier, G. van der, Maas, L. R. M.: The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map. Physica D 141 (2000), 19-36. MR 1764166
[21] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. DOI 10.1016/j.cnsns.2011.07.017 | MR 2843793
[22] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA 12 (2011), 106-118. MR 2728666 | Zbl 1213.37061
[23] Wei, Z. C., Yang, Q. G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68 (2012), 543-554. MR 2928053 | Zbl 1252.93067
[24] Wei, Z. C., Yang, Q. G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. RWA. 12 (2011), 106-118. MR 2728666 | Zbl 1213.37061
[25] Wei, Z. C., Yang, Q. G.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Comput. 217 (2010), 422-429. DOI 10.1016/j.amc.2010.05.035 | MR 2672602 | Zbl 1200.65102
[26] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system. Internat. J. Bifur. Chaos 17 (2007), 3929-3949. DOI 10.1142/S0218127407019792 | MR 2384392 | Zbl 1149.37308
[27] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Internat. J. Bifur. Chaos 18 (2008), 1393-1414. DOI 10.1142/S0218127408021063 | MR 2427132 | Zbl 1147.34306
[28] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci. Internat. J. Bifur. Chaos 20 (2010), 1061-1083. DOI 10.1142/S0218127410026320 | MR 2660159
[29] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. DOI 10.1109/TCSI.2011.2180429 | MR 2924533
Partner of
EuDML logo