Previous |  Up |  Next

Article

Keywords:
sample-time data; attractive ellipsoid; state estimation; saturated control process; flexible arm system
Summary:
This paper deals with a bounded control design for a class of nonlinear systems where the mathematical model may be not explicitly given. This class of uncertain nonlinear systems governed by a system of ODE with quasi-Lipschitz right-hand side and containing external perturbations as well. The Attractive Ellipsoid Method (AEM) application permits to describe the class of nonlinear feedbacks (containing a nonlinear projection operator, a linear state estimator and a feedback matrix-gain) guaranteeing a boundedness of all possible trajectories around the origin. To fulfill this property some modification of AEM are introduced: basically, some sort of sample-time corrections of the feedback parameters are required. The optimization of feedback within this class of controllers is associated with the selection of the feedback parameters which provide the trajectory converges within an ellipsoid of a “minimal size“. The effectiveness of the suggested approach is illustrated by its application to a flexible arm system).
References:
[1] Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: High gain observer design for some networked control systems. IEEE Trans. Automat. Control 57 (2012), 4, 995-1000. DOI 10.1109/TAC.2011.2168049 | MR 2952330
[2] Blanchini, F.: Set invariance in control, a survey. Automatica 35 (1999), 11, 1747-1767. DOI 10.1016/S0005-1098(99)00113-2 | MR 1831764
[3] Blanchini, F., Miani, F.: Set-Theoretic Methods in Control. Birkhauser, Boston 2008. MR 2359816 | Zbl 1140.93001
[4] Bortoff, S. A., Lynch, A. F.: Synthesis of Optimal Nonlinear Observersr. 34th IEEE Conference on Decision and Control 1 (1995), 95-100.
[5] Dahleh, M. A., Pearson, J. B.: Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization. IEEE Trans. on Automat. Control 33 (1988), 8, 722-731. DOI 10.1109/9.1288 | MR 0950793 | Zbl 0657.93019
[6] Davila, J., Poznyak, A.: Sliding mode parameter adjustment for perturbed linear systems with actuators via invariant ellipsoid method. Internat. J. Robust and Nonlinear Control 21 (2011), 473-487. DOI 10.1002/rnc.1599 | MR 2808892 | Zbl 1214.93026
[7] Duncan, G. J., Schweppe, F. C.: Control of linear dynamic systems with set constrained disturbances. IEEE Trans. Automat. Control 16 (1971), 5, 411-423. DOI 10.1109/TAC.1971.1099781 | MR 0287947
[8] Gonzalez, S., Polyakov, A., Poznyak, A.: Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft. Automat. Remote Control 72 (2011), 3, 540-555. DOI 10.1134/S0005117911030064 | MR 2828448 | Zbl 1229.93138
[9] Ioannou, P., Sun, J.: Robust Adaptive Control. Prentice Hall, Inc, 1996. Zbl 0839.93002
[10] Jong, M. L., Jay, H. L.: Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes. Automatica 41 (2005), 1281-1288. DOI 10.1016/j.automatica.2005.02.006 | MR 2160128 | Zbl 1092.93011
[11] Kabamba, P. T., Hara, S.: Worst-case analysis and design of sampled-data control systems. IEEE Trans. Automat. Control 38 (1993), 9, 1337-1358. DOI 10.1109/9.237646 | MR 1240826 | Zbl 0787.93068
[12] Kurzhanski, A. B., Veliov, V. M.: Modeling Techniques and Uncertain Systems. Birkhauser, New York 1994. MR 1287643
[13] Kou, S. R., Elliott, D. L., Tarn, T. J.: Exponential observers for non-linear dynamic systems. Inform. Control 29 (1975), 393-428. MR 0384227
[14] Min, W., Zhou, Z. Lan, Jinhua, S.: Design of observer-based $H_{\infty }$ robust repetitive-control system. IEEE Trans. Automat. Control 56 (2011), 6, 1452-1457. DOI 10.1109/TAC.2011.2112473 | MR 2839242
[15] Narendra, K. S., Annaswamy, A. M.: Stable Adaptive Systems. Dover Publications Inc., 2005. Zbl 1217.93081
[16] Nazin, A., Polyak, B., Topunov, M.: Rejection of bounded exogenous disturbances by the method of invariant ellipsoids. Automat. Remote Control 68 (2007), 3, 467-486. DOI 10.1134/S0005117907030083 | MR 2304813 | Zbl 1125.93370
[17] O'Reilly, J.: Observers for Linear Systems. Academic Press, 1983. Zbl 0513.93001
[18] Ordaz, P., Poznyak, A.: Stabilizaton of furuta's pendulum with out model: Attractive ellipsoid method. In: 51th IEEE Conference of Decision and Control, Hawaii 2012, pp. 7285-7290.
[19] Poliakov, A., Poznyak, A.: Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control. Automatica 47 (2011), 1450-1454. DOI 10.1016/j.automatica.2011.02.013 | MR 2889242
[20] Poznyak, A.: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic techniques. Vol. 1. Elsevier 2008. MR 2374025
[21] Poznyak, A., Azhmyakov, V., Mera, M.: Practical output feedback stabilization for a class of continuous-time dynamic systems under sample-data outputs. Internat. J. Control 8 (2011), 4, 1408-1416. DOI 10.1080/00207179.2011.603097 | MR 2830870
[22] Proychev, T. P., Mishkov, R. L.: Transformation of nonlinear systems in observer canonical from with reduced dependency on derivatives of the input. Automatica 29 (1993), 2, 495-498. DOI 10.1016/0005-1098(93)90145-J | MR 1211308
[23] Rudin, W.: Functional Analysis. Second edition. MacGraw-Hill, Inc. 1991. MR 1157815
[24] Sussmann, H. J., Sontag, E. D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE Trans. Automat. Control 39 (1994), 12, 2411-2425. DOI 10.1109/9.362853 | MR 1337566 | Zbl 0811.93046
[25] Tingshu, H., Zongli, L.: Control Systems with Actuator Saturation: Analyze and Design. Birkhauser, Boston 2001.
[26] Teel, A. R.: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Automat. Control 41 (1996), 9, 1256-1270. DOI 10.1109/9.536496 | MR 1409471 | Zbl 0863.93073
[27] Utkin, V.: Sliding mode control design principles and applications to electric drives. IEEE Trans. on Industrial Electronics 40 (1993), 1, 23-36. DOI 10.1109/41.184818
[28] Walcott, B., Corless, M., Zak, S.: Comparative study of non-linear state-observation techniques. Internat. J. Control 45 (1987), 6, 2109-2132. DOI 10.1080/00207178708933870 | MR 0891800 | Zbl 0627.93012
[29] Zeitz, M.: The extended Luenberger observer for nonlinear systems. Systems Control Lett. 9 (1987), 149-156. DOI 10.1016/0167-6911(87)90021-1 | MR 0906234 | Zbl 0624.93012
Partner of
EuDML logo